Are you Zhikai Gu?

Claim your profile

Publications (2)5.04 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: The purpose of this study was to investigate the impact of SAM- and SH3-domain containing 1 (SASH1) on the biological behavior of glioma cells, including its effects on cellular growth, proliferation, apoptosis, invasion, and metastasis, and thereby to provide an experimental basis for future therapeutic treatments. A pcDNA3.1-SASH1 eukaryotic expression vector was constructed and transfected into the U251 human glioma cell line. Using the tetrazolium-based colorimetric (MTT) assay, flow cytometry analyses, transwell invasion chamber experiments, and other methods, we examined the impact of SASH1 on the biological behaviors of U251 cells, including effects on viability, cell cycle, apoptosis, and invasion. Furthermore, the effect of SASH1 on the expression of cyclin D1, caspase-3, matrix metalloproteinase (MMP)-2, MMP-9, and other proteins was observed. Compared to the empty vector and blank control groups, the pcDNA3.1-SASH1 group of U251 cells exhibited significantly reduced cell viability, proliferation, and invasion (p < 0.05), although there was no difference between the empty vector and blank control groups. The pcDNA3.1-SASH1 group demonstrated a significantly higher apoptotic index than did the empty vector and blank control groups (p < 0.05), and the percentage of apoptotic cells was similar between the empty vector and blank control groups. In addition, the pcDNA3.1-SASH1 group expressed significantly lower protein levels of cyclin D1 and MMP-2/9 compared to the control and empty vector groups (p < 0.05) and significantly higher protein levels of caspase-3 than the other two groups (p < 0.05). Cyclin D1, caspase-3, and MMP-2/9 expression was unchanged between the empty vector and blank control groups. SASH1 gene expression might be related to the inhibition of the growth, proliferation, and invasion of U251 cells and the promotion of U251 cells apoptosis.
    Tumor Biology 08/2012; · 2.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Gliomas are the most common tumors in the central nervous system. This study aims to investigate the expressions of transforming growth factor-β1 (TGF-β1) and epithelial cadherin (E-cadherin) in human brain glioma tissues and the correlation between their expressions with clinical pathological features and clinical significance. The expressions of mRNA or protein of TGF-β1 and E-cadherin were detected by using reverse transcription polymerase chain reaction (RT-PCR) and Western blot in these tissues. Positive rates of the expression of TGF-β1 and E-cadherin were 62.9 % and 38.6 % in brain tissues of glioma patients. The expressions of mRNA or protein for TGF-β1 in brain glioma tissues were significantly higher than that in normal brain tissues (p < 0.01). Their expressions in well-differentiated glioma brain tissues were lower than those in poorly differentiated glioma brain tissues (p < 0.01). A negative correlation was found between TGF-β1 and E-cadherin in brain glioma tissues (r = -0.302, p < 0.011). The cell numbers of C6 glioma through Transwell chambers were decreased significantly (p < 0.01), and the expression of TGF-β1 was downregulated significantly (p < 0.01). However, the expression of E-cadherin was upregulated significantly (p < 0.01) after transfecting TGF-β1 siRNA. The expression changes of TGF-β1 and E-cadherin may be related to the emergence and the development of glioma. Downregulation of TGF-β1 expression using siRNA can decrease the invasive capability of C6 glioma cells.
    Tumor Biology 04/2012; 33(5):1477-84. · 2.52 Impact Factor