Katharine R. Hind

University of British Columbia - Vancouver, Vancouver, British Columbia, Canada

Are you Katharine R. Hind?

Claim your profile

Publications (5)16.14 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Coralline red algae play a key role in the ecology of near shore marine ecosystems and are increasingly being used to study the effects of climate change in the marine environment. Corallines are very difficult to identify to species, and even to genus, using morpho-anatomy, likely complicating studies of their ecology, physiology, and biodiversity. We sequenced a 296 base pair fragment of chloroplast DNA from a 187 year-old isolectotype specimen of Pachyarthron cretaceum, a morphologically distinct geniculate species, to demonstrate that coralline morphology is often misleading and that species names can only be applied unequivocally by comparing DNA sequences from type material with sequences from field collected specimens. Our results indicate that Pachyarthron cretaceum is synonymous with Corallina officinalis.This article is protected by copyright. All rights reserved.
    Journal of Phycology 05/2014; 50(4). DOI:10.1111/jpy.12205 · 2.53 Impact Factor
  • Katharine R Hind, Gary W Saunders
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of molecular markers in taxonomic studies has become a standard practice in biology. However, consensus on which markers to use at the species level is lacking because evolutionary lineages show differences in divergence rates between organellar genomes. Ideally, researchers use multiple lines of evidence when first describing a species, such as the incorporation of several molecular markers from varied genomes (mitochondrion, plastid and nucleus). This study examined species boundaries in the red algal genus Chiharaea. We used five molecular markers, with at least one marker from each genome, coupled with thorough morphological analyses. We recognized three species in Chiharaea (C. americana, C. rhododactyla sp. nov., C. silvae) and two forms (C. americana f. americana and C. americana f. bodegensis (H.W. Johansen) stat. nov.). For C. americana f. americana and C. americana f. bodegensis differentiation based on morphological data was reflected in the plastid-encoded large subunit of RuBisCO (rbcL), but was not concordant with either the mitochondrial cytochrome c oxidase subunit 1 (COI-5P) or nuclear internal transcribed spacer (ITS) sequence data. We suggest that this discordance is indicative of ongoing hybridization and introgression between populations of C. americana f. americana and C. americana f. bodegensis. In addition, we used a PCR assay with ITS specific primers to amplify multiple ITS variants for collections assignable to C. americana indicating that there is genetic variability within ITS copies most likely due to introgression, crossing over and/or the retention of ancestral variants.
    Molecular Phylogenetics and Evolution 03/2013; 67(2). DOI:10.1016/j.ympev.2013.02.022 · 4.02 Impact Factor
  • Katharine R. Hind, Gary W. Saunders
    [Show abstract] [Hide abstract]
    ABSTRACT: A multigene phylogeny using COI‐5P (mitochondrial cytochrome c oxidase subunit 1), psbA (PSII reaction center protein D1), and EF2 (elongation factor 2) sequence data for members of the tribe Corallineae was constructed to assess generic boundaries. We determined that traditional reliance on conceptacle position as an indicator of generic affinities in the Corallineae is not supported and taxonomic changes are required. We found that species currently assigned to Pseudolithophyllum muricatum resolved within the Corallineae in all analyses. This is the first record of crustose members in the subfamily Corallinoideae. Further‐more, the genus Serraticardia was polyphyletic; we propose to synonomize Serraticardia with Corallina, transfer the type species S. maxima to Corallina (C. maxima (Yendo) comb. nov.), and describe the new genus Johansenia for S. macmillanii (J. macmillanii (Yendo) comb. nov.). Our molecular data also indicate that species in the genus Marginisporum have evolutionary affinities among species of Corallina and these genera should also be synonymized. This necessitates the combinations C. aberrans (Yendo) comb. nov. for M. aberrans (Yendo) Johansen & Chihara, C. crassissima (Yendo) comb. nov. for M. crassissimum (Yendo) Ganesan, and C. declinata (Yendo) comb. nov. for M. declinata (Yendo) Ganesan. Corallina elongata was divergent from all other members of Corallina and is transferred to a new genus, Ellisolandia (E. elongata (J. Ellis & Solander) comb. nov). In addition, COI‐5P and internal transcribed spacer (ITS) data combined with morphological characters were used to establish that rather than the four Corallina species recognized in Canada, there are nine.
    Journal of Phycology 02/2013; 49(1). DOI:10.1111/jpy.12019 · 2.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When .2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region.
    PLoS ONE 05/2012; 7(5):e36514. doi:10.1371/journal.pone.0036514. DOI:10.1371/journal.pone.0036514 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region.
    PLoS ONE 05/2012; 7(5):e36514. · 3.53 Impact Factor