Zujian Chen

Sun Yat-Sen University, Shengcheng, Guangdong, China

Are you Zujian Chen?

Claim your profile

Publications (11)42.67 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Runt-related transcription factor Runx2 is critical for skeletal development but is also aberrantly expressed in breast cancers, and promotes cell growth and invasion. A de-regulated serine/threonine kinase Akt signaling pathway is implicated in mammary carcinogenesis and cell survival; however the mechanisms underlying Runx2 role in survival of invasive breast cancer cells are still unclear. The phenotypic analysis of Runx2 function in cell survival was performed by gene silencing and flow cytometric analysis in highly invasive MDA-MB-231 and SUM-159-PT mammary epithelial cell lines. The expression analysis of Runx2 and pAkt (serine 473) proteins in metastatic breast cancer specimens was performed by immunohistochemistry. The mRNA and protein levels of kinases and phosphatases functional in Akt signaling were determined by real-time PCR and western blotting, while DNA-protein interaction was studied by chromatin immunoprecipitation assays. The high Runx2 levels in invasive mammary epithelial cell lines promoted cell survival in Akt phosphorylation (pAkt-serine 473) dependent manner. The analysis of kinases and phosphatases associated with pAkt regulation revealed that Runx2 promotes pAkt levels via mammalian target of rapamycin complex-2 (mTORC2). The recruitment of Runx2 on mTOR promoter coupled with Runx2-dependent expression of mTORC2 component Rictor defined Runx2 function in pAkt-mediated survival of invasive breast cancer cells. Our results identified a novel mechanism of Runx2 regulatory crosstalk in Akt signaling that could have important consequences in targeting invasive breast cancer-associated cell survival.
    Breast cancer research: BCR 01/2014; 16(1):R16. · 5.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The miR-99 family is one of the evolutionarily most ancient microRNA families, and it plays a critical role in developmental timing and the maintenance of tissue identity. Recent studies, including reports from our group, suggested that the miR-99 family regulates various physiological processes in adult tissues, such as dermal wound healing, and a number of disease processes, including cancer. By combining 5 independent genome-wide expression profiling experiments, we identified a panel of 266 unique transcripts that were down-regulated in epithelial cells transfected with miR-99 family members. A comprehensive bioinformatics analysis using 12 different sequence-based microRNA target prediction algorithms revealed that 81 out of these 266 down-regulated transcripts are potential direct targets for the miR-99 family. Confirmation experiments and functional analyses were performed to further assess 6 selected miR-99 target genes, including mammalian Target of rapamycin (mTOR), Homeobox A1 (HOXA1), CTD small phosphatase-like (CTDSPL), N-myristoyltransferase 1 (NMT1), Transmembrane protein 30A (TMEM30A), and SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5). HOXA1 is a known proto-oncogene, and it also plays an important role in embryonic development. The direct targeting of the miR-99 family to two candidate binding sequences located in the HOXA1 mRNA was confirmed using a luciferase reporter gene assay and a ribonucleoprotein-immunoprecipitation (RIP-IP) assay. Ectopic transfection of miR-99 family reduced the expression of HOXA1, which, in consequence, down-regulated the expression of its downstream gene (i.e., Bcl-2) and led to reduced proliferation and cell migration, as well as enhanced apoptosis. In summary, we identified a number of high-confidence miR-99 family target genes, including proto-oncogene HOXA1, which may play an important role in regulating epithelial cell proliferation and migration during physiological disease processes, such as dermal wound healing and tumorigenesis.
    PLoS ONE 01/2013; 8(12):e80625. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA repair system plays an indispensable role in maintaining genomic integrity, and its ability to mediate and repair carcinogen-induced DNA lesion is a key determinant of susceptibility to carcinogenesis. Increasing evidence has demonstrated that reduced DNA repair capacity might play a central role in cancer development. Enhanced proliferation is a hall mark of cancer cells. In this study, we aim to test the association between reduction in DNA repair and enhancement in cell proliferation in HNSCC. The expression of base excision repair pathway genes (XRCC1 and OGG1) and a proliferation marker, Ki-67, was studied in a cohort of 50 HNSCC patients and controls, using real-time PCR in order to determine the potential prognostic significance of these factors. Using real-time PCR, statistically significant downregulation of XRCC1 (p < 0.01) and OGG1 (p < 0.04) was observed in HNC tumor samples compared to control samples. Ki-67 was also overexpressed (p < 0.03) in HNC tumor samples versus control samples. Additionally, to explore gene-gene relationship, we observed a positive Spearmen correlation between XRCC1 versus OGG1 (r = 0.554***, p < 0.0001) and a negative correlation between XRCC1 versus Ki-67 (r = -0.377**, p < 0.007) in HNC cases. OGG1 also showed negative correlation with Ki-67, but this correlation was statistically not significant. In this study, we have found that the deregulation of BER genes (XRCC1 and OGG1) in relation to excessive proliferation (as measured by proliferation marker Ki-67) may be considered as important factors in the development of head and neck cancer in Pakistani population.
    Medical Oncology 07/2012; · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Runt-related transcription factor Runx2 is essential for bone development but is also implicated in progression of several cancers of breast, prostate and bone, where it activates cancer-related genes and promotes invasive properties. The transforming growth factor β (TGF-β) family member bone morphogenetic protein-3B (BMP-3B/GDF10) is regarded as a tumor growth inhibitor and a gene silenced in lung cancers; however the regulatory mechanisms leading to its silencing have not been identified. Here we show that Runx2 is highly expressed in lung cancer cells and downregulates BMP-3B. This inverse relationship between Runx2 and BMP-3B expression is further supported by increased expression of BMP-3B in mesenchymal cells from Runx2 deficient mice. The ectopic expression of Runx2, but not DNA binding mutant Runx2, in normal lung fibroblast cells and lung cancer cells resulted in suppression of BMP-3B levels. The chromatin immunoprecipitation studies identified that the mechanism of Runx2-mediated suppression of BMP-3B is due to the recruitment of Runx2 and histone H3K9-specific methyltransferase Suv39h1 to BMP-3B proximal promoter and a concomitant increase in histone methylation (H3K9) status. The knockdown of Runx2 in H1299 cells resulted in decreased histone H3K9 methylation on BMP-3B promoter and increased BMP-3B expression levels. Furthermore, co-immunoprecipitation studies showed a direct interaction of Runx2 and Suv39h1 proteins. Phenotypically, Runx2 overexpression in H1299 cells increased wound healing response to TGFβ treatment. Our studies identified BMP-3B as a new Runx2 target gene and revealed a novel function of Runx2 in silencing of BMP-3B in lung cancers. Our results suggest that Runx2 is a potential therapeutic target to block tumor suppressor gene silencing in lung cancer cells.
    Molecular Cancer 04/2012; 11:27. · 5.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNA deregulation is a critical event in head and neck squamous cell carcinoma (HNSCC). Several microRNA profiling studies aimed at deciphering the microRNA signatures of HNSCC have been reported, but there tends to be poor agreement among studies. The objective of this study was to survey the published microRNA profiling studies on HNSCC, and to assess the commonly deregulated microRNAs in an independent sample set. Meta-analysis of 13 published microRNA profiling studies was performed to define microRNA signatures in HNSCC. Selected microRNAs (including members of miR-99 family) were evaluated in an independent set of HNSCC cases. The potential contributions of miR-99 family to the tumorigenesis of HNSCC were assessed by in vitro assays. We identified 67 commonly deregulated microRNAs. The up-regulation of miR-21, miR-155, miR-130b, miR-223 and miR-31, and the down-regulation of miR-100, miR-99a and miR-375 were further validated in an independent set of HNSCC cases with quantitative RT-PCR. Among these validated microRNAs, miR-100 and miR-99a belong to the miR-99 family. Our in vitro study demonstrated that restoration of miR-100 to the HNSCC cell lines suppressed cell proliferation and migration, and enhanced apoptosis. Furthermore, ectopic transfection of miR-99 family members down-regulated the expression of insulin-like growth factor 1 receptor (IGF1R) and mechanistic target of rapamycin (mTOR) genes. In summary, we described a panel of frequently deregulated microRNAs in HNSCC, including members of miR-99 family. The deregulation of miR-99 family contributes to the tumorigenesis of HNSCC, in part by targeting IGF1R and mTOR signaling pathways.
    Oral Oncology 03/2012; 48(8):686-91. · 2.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enhancer of Zeste homolog 2 (EZH2) is a critical component of the polycomb-repressive complex 2 (PRC2) that regulates many essential biological processes, including embryogenesis and many developmental events. The oncogenic role of EZH2 has recently been implicated in several cancer types. In this study, we first confirmed that the over-expression of EZH2 is a frequent event in oral tongue squamous cell carcinoma (OTSCC). We further demonstrated that EZH2 over-expression is correlated with advanced stages of the disease and is associated with lymph node metastasis. Statistical analysis revealed that EZH2 over-expression was correlated with reduced overall survival. Furthermore, over-expression of EZH2 was correlated with reduced expression of tumor suppressor gene E-cadherin. These observations were confirmed in vitro, in which knockdown of EZH2-induced E-cadherin expression and reduced cell migration and invasion. In contrast, ectopic transfection of EZH2 led to reduced E-cadherin expression and enhanced cell migration and invasion. Furthermore, EZH2 may act on cell migration in part by suppressing the E-cadherin expression. Taken together, these data suggest that EZH2 plays major roles in the progression of OTSCC, and may serve as a biomarker or therapeutic target for patients at risk of metastasis. © 2011 Wiley Periodicals, Inc.
    Molecular Carcinogenesis 12/2011; · 4.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNA-138 is one of the most frequently down-regulated microRNAs in cancer. We recently identified 51 candidate targets of microRNA-138 (Jiang, L., Dai, Y., Liu, X., Wang, C., Wang, A., Chen, Z., Heidbreder, C. E., Kolokythas, A., and Zhou, X. (2011) Hum. Genet. 129, 189-197). Among these candidates, Fos-like antigen 1 (FOSL1) is a member of Fos gene family and is a known proto-oncogene. In this study, we first confirmed the microRNA-138-mediated down-regulation of FOSL1 in squamous cell carcinoma cell lines. We then demonstrated the effect of this microRNA-138-FOSL1 regulatory module on downstream genes (homolog of Snail 2 (Snai2) expression and the Snai2-mediated repression of E-cadherin expression), as well as its contributions to tumorigenesis. The microRNA-138-directed recruitment of FOSL1 mRNA to the RNAi-induced silencing complex was confirmed by a ribonucleoprotein-immunoprecipitation assay. Three canonical and three high affinity non-canonical microRNA-138 (miR-138) targeting sites were identified on the FOSL1 mRNA: one in the 5'-UTR, three overlapping sites in the coding sequences, and two overlapping sites in the 3'-UTR. The direct targeting of miR-138 to these sites was confirmed using luciferase reporter gene assays. In summary, we describe an important microRNA regulatory module, which may play an important role in cancer initiation and progression. Our results also provide evidence that microRNAs target both canonical and non-canonical targeting sites located in all areas of the mRNA molecule (e.g. 5'-UTR, coding sequences, and 3'-UTR).
    Journal of Biological Chemistry 11/2011; 286(46):40104-9. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin II AT(2) receptor interacting protein 1 (ATIP1) has been recently identified as a tumor suppressor. In the present study, a 2.2 kb fragment of the 5' flanking region of the human ATIP1 gene was cloned, and its promoter activity was confirmed. Two putative p53 binding sites were identified in the minimal promoter. Cisplatin treatment and ectopic expression of p53 led to enhanced ATIP1 expression. Knockdown of p53 reduced the ATIP1 expression. The direct interaction of p53 and the ATIP1 promoter was confirmed by reporter gene and chromatin-immunoprecipitation assays. When the p53 sites were mutated, the effect of p53 on ATIP1 promoter was eliminated. The results suggest that the ATIP1 gene is regulated by p53 at the transcriptional level, and that it may play an important role in cancer initiation and progression.
    Oncology letters 09/2011; 2(5):919-922. · 0.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Down-regulation of miR-138 (microRNA-138) has been frequently observed in various cancers, including HNSCC (head and neck squamous cell carcinoma). Our previous studies suggest that down-regulation of miR-138 is associated with mesenchymal-like cell morphology and enhanced cell migration and invasion. In the present study, we demonstrated that these miR-138-induced changes were accompanied by marked reduction in E-cad (E-cadherin) expression and enhanced Vim (vimentin) expression, characteristics of EMT (epithelial-mesenchymal transition). On the basis of a combined experimental and bioinformatics analysis, we identified a number of miR-138 target genes that are associated with EMT, including VIM, ZEB2 (zinc finger E-box-binding homeobox 2) and EZH2 (enhancer of zeste homologue 2). Direct targeting of miR-138 to specific sequences located in the mRNAs of the VIM, ZEB2 and EZH2 genes was confirmed using luciferase reporter gene assays. Our functional analyses (knock-in and knock-down) demonstrated that miR-138 regulates the EMT via three distinct pathways: (i) direct targeting of VIM mRNA and controlling the expression of VIM at a post-transcriptional level, (ii) targeting the transcriptional repressors (ZEB2) which in turn regulating the transcription activity of the E-cad gene, and (iii) targeting the epigenetic regulator EZH2 which in turn modulates its gene silencing effects on the downstream genes including E-cad. These results, together with our previously observed miR-138 effects on cell migration and invasion through targeting RhoC (Rho-related GTP-binding protein C) and ROCK2 (Rho-associated, coiled-coil-containing protein kinase 2) concurrently, suggest that miR-138 is a multi-functional molecular regulator and plays major roles in EMT and in HNSCC progression.
    Biochemical Journal 07/2011; 440(1):23-31. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: miR-7 (microRNA-7) has been characterized as a tumour suppressor in several human cancers. It targets a number of proto-oncogenes that contribute to cell proliferation and survival. However, the mechanism(s) by which miR-7 suppresses tumorigenesis in TSCC (tongue squamous cell carcinoma) is unknown. The present bioinformatics analysis revealed that IGF1R (insulin-like growth factor 1 receptor) mRNA is a potential target for miR-7. Ectopic transfection of miR-7 led to a significant reduction in IGF1R at both the mRNA and protein levels in TSCC cells. Knockdown of miR-7 in TSCC cells enhanced IGF1R expression. Direct targeting of miR-7 to three candidate binding sequences located in the 3'-untranslated region of IGF1R mRNA was confirmed using luciferase-reporter-gene assays. The miR-7-mediated down-regulation of IGF1R expression attenuated the IGF1 (insulin-like growth factor 1)-induced activation of Akt (protein kinase B) in TSCC cell lines, which in turn resulted in a reduction in cell proliferation and cell-cycle arrest, and an enhanced apoptotic rate. Taken together, the present results demonstrated that miR-7 regulates the IGF1R/Akt signalling pathway by post-transcriptional regulation of IGF1R. Our results indicate that miR-7 plays an important role in TSCC and may serve as a novel therapeutic target for TSCC patients.
    Biochemical Journal 11/2010; 432(1):199-205. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNA deregulation is a critical event in tumor initiation and progression. The down-regulation of microRNA-138 has been frequently observed in various cancers, including tongue squamous cell carcinoma (TSCC). Our previous studies suggest that deregulation of miR-138 is associated with the enhanced proliferation and invasion in TSCC cells. Here, we seek to identify the targets of miR-138 in TSCC, and explore their functional relevance in tumorigenesis. Our genome-wide expression profiling experiments identified a panel of 194 unique transcripts that were significantly down-regulated in TSCC cells transfected with miR-138. A comprehensive screening using six different sequence-based microRNA target prediction algorithms revealed that 51 out of these 194 down-regulated transcripts are potential direct targets for miR-138. These targets include: chloride channel, nucleotide-sensitive, 1A (CLNS1A), G protein alpha inhibiting activity polypeptide 2 (GNAI2), solute carrier family 20, member 1 (SLC20A1), eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), and Rho-related GTP-binding protein C (RhoC). GNAI2 is a known proto-oncogene that is involved in the initiation and progression of several different types of tumors. Direct targeting of miR-138 to two candidate binding sequences located in the 3'-untranslated region of GNAI2 mRNA was confirmed using luciferase reporter gene assays. Knockdown of miR-138 in TSCC cells enhanced the expression of GNAI2 at both mRNA and protein levels. In contrast, ectopic transfection of miR-138 reduced the expression of GNAI2, which, in consequence, led to reduced proliferation, cell cycle arrest and apoptosis. In summary, we identified a number of high-confident miR-138 target genes, including proto-oncogene GNAI2, which may play an important role in TSCC initiation and progression.
    Human Genetics 11/2010; 129(2):189-97. · 4.63 Impact Factor

Publication Stats

183 Citations
42.67 Total Impact Points

Institutions

  • 2013
    • Sun Yat-Sen University
      • Department of Oral and Maxillofacial Surgery
      Shengcheng, Guangdong, China
  • 2010–2012
    • University of Illinois at Chicago
      • Center for Molecular Biology of Oral Diseases
      Chicago, IL, United States