B M Spiegelman

Dana-Farber Cancer Institute, Boston, Massachusetts, United States

Are you B M Spiegelman?

Claim your profile

Publications (326)4261.62 Total impact

  • Bruce M Spiegelman, Christiane Wrann
    Diabetes 09/2014; 63(9):e17. · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cachexia is a wasting disorder of adipose and skeletal muscle tissues that leads to profound weight loss and frailty. About half of all cancer patients suffer from cachexia, which impairs quality of life, limits cancer therapy and decreases survival. One key characteristic of cachexia is higher resting energy expenditure levels than in healthy individuals, which has been linked to greater thermogenesis by brown fat. How tumours induce brown fat activity is unknown. Here, using a Lewis lung carcinoma model of cancer cachexia, we show that tumour-derived parathyroid-hormone-related protein (PTHrP) has an important role in wasting, through driving the expression of genes involved in thermogenesis in adipose tissues. Neutralization of PTHrP in tumour-bearing mice blocked adipose tissue browning and the loss of muscle mass and strength. Our results demonstrate that PTHrP mediates energy wasting in fat tissues and contributes to the broader aspects of cancer cachexia. Thus, neutralization of PTHrP might hold promise for ameliorating cancer cachexia and improving patient survival.
    Nature 07/2014; · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brown fat can reduce obesity through the dissipation of calories as heat. Control of thermogenic gene expression occurs via the induction of various coactivators, most notably PGC-1α. In contrast, the transcription factor partner(s) of these cofactors are poorly described. Here, we identify interferon regulatory factor 4 (IRF4) as a dominant transcriptional effector of thermogenesis. IRF4 is induced by cold and cAMP in adipocytes and is sufficient to promote increased thermogenic gene expression, energy expenditure, and cold tolerance. Conversely, knockout of IRF4 in UCP1+ cells causes reduced thermogenic gene expression and energy expenditure, obesity, and cold intolerance. IRF4 also induces the expression of PGC-1α and PRDM16 and interacts with PGC-1α, driving Ucp1 expression. Finally, cold, β-agonists, or forced expression of PGC-1α are unable to cause thermogenic gene expression in the absence of IRF4. These studies establish IRF4 as a transcriptional driver of a program of thermogenic gene expression and energy expenditure.
    Cell 07/2014; 158(1):69-83. · 31.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A hallmark of type 2 diabetes mellitus (T2DM) is the development of pancreatic β cell failure, which results in insulinopenia and hyperglycemia. We show that the adipokine adipsin has a beneficial role in maintaining β cell function. Animals genetically lacking adipsin have glucose intolerance due to insulinopenia; isolated islets from these mice have reduced glucose-stimulated insulin secretion. Replenishment of adipsin to diabetic mice treated hyperglycemia by boosting insulin secretion. We identify C3a, a peptide generated by adipsin, as a potent insulin secretagogue and show that the C3a receptor is required for these beneficial effects of adipsin. C3a acts on islets by augmenting ATP levels, respiration, and cytosolic free Ca(2+). Finally, we demonstrate that T2DM patients with β cell failure are deficient in adipsin. These findings indicate that the adipsin/C3a pathway connects adipocyte function to β cell physiology, and manipulation of this molecular switch may serve as a therapy in T2DM.
    Cell. 07/2014; 158(1):41-53.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exercise training benefits many organ systems and offers protection against metabolic disorders such as obesity and diabetes. Using the recently identified isoform of PGC1-α (PGC1-α4) as a discovery tool, we report the identification of meteorin-like (Metrnl), a circulating factor that is induced in muscle after exercise and in adipose tissue upon cold exposure. Increasing circulating levels of Metrnl stimulates energy expenditure and improves glucose tolerance and the expression of genes associated with beige fat thermogenesis and anti-inflammatory cytokines. Metrnl stimulates an eosinophil-dependent increase in IL-4 expression and promotes alternative activation of adipose tissue macrophages, which are required for the increased expression of the thermogenic and anti-inflammatory gene programs in fat. Importantly, blocking Metrnl actions in vivo significantly attenuates chronic cold-exposure-induced alternative macrophage activation and thermogenic gene responses. Thus, Metrnl links host-adaptive responses to the regulation of energy homeostasis and tissue inflammation and has therapeutic potential for metabolic and inflammatory diseases.
    Cell. 06/2014; 157(6):1279-1291.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thermogenic UCP1-positive cells, which include brown and beige adipocytes, transform chemical energy into heat and increase whole-body energy expenditure. Using a ribosomal profiling approach, we present a comprehensive molecular description of brown and beige gene expression from multiple fat depots in vivo. This UCP1-TRAP data set demonstrates striking similarities and important differences between these cell types, including a smooth muscle-like signature expressed by beige, but not classical brown, adipocytes. In vivo fate mapping using either a constitutive or an inducible Myh11-driven Cre demonstrates that at least a subset of beige cells arise from a smooth muscle-like origin. Finally, ectopic expression of PRDM16 converts bona fide vascular smooth muscle cells into Ucp1-positive adipocytes in vitro. These results establish a portrait of brown and beige adipocyte gene expression in vivo and identify a smooth muscle-like origin for beige cells.
    Cell metabolism 04/2014; · 17.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermogenic UCP1-positive cells, which include brown and beige adipocytes, transform chemical energy into heat and increase whole-body energy expenditure. Using a ribosomal profiling approach, we present a comprehensive molecular description of brown and beige gene expression from multiple fat depots in vivo. This UCP1-TRAP data set demonstrates striking similarities and important differences between these cell types, including a smooth muscle-like signature expressed by beige, but not classical brown, adipocytes. In vivo fate mapping using either a constitutive or an inducible Myh11-driven Cre demonstrates that at least a subset of beige cells arise from a smooth muscle-like origin. Finally, ectopic expression of PRDM16 converts bona fide vascular smooth muscle cells into Ucp1-positive adipocytes in vitro. These results establish a portrait of brown and beige adipocyte gene expression in vivo and identify a smooth muscle-like origin for beige cells.
    Cell metabolism 04/2014; · 17.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A clear relationship exists between visceral obesity and type 2 diabetes, whereas subcutaneous obesity is comparatively benign. Here, we show that adipocyte-specific deletion of the coregulatory protein PRDM16 caused minimal effects on classical brown fat but markedly inhibited beige adipocyte function in subcutaneous fat following cold exposure or β3-agonist treatment. These animals developed obesity on a high-fat diet, with severe insulin resistance and hepatic steatosis. They also showed altered fat distribution with markedly increased subcutaneous adiposity. Subcutaneous adipose tissue in mutant mice acquired many key properties of visceral fat, including decreased thermogenic and increased inflammatory gene expression and increased macrophage accumulation. Transplantation of subcutaneous fat into mice with diet-induced obesity showed a loss of metabolic benefit when tissues were derived from PRDM16 mutant animals. These findings indicate that PRDM16 and beige adipocytes are required for the "browning" of white fat and the healthful effects of subcutaneous adipose tissue.
    Cell 01/2014; 156(1-2):304-16. · 31.96 Impact Factor
  • Evan D Rosen, Bruce M Spiegelman
    [Show abstract] [Hide abstract]
    ABSTRACT: There has been an upsurge of interest in the adipocyte coincident with the onset of the obesity epidemic and the realization that adipose tissue plays a major role in the regulation of metabolic function. The past few years, in particular, have seen significant changes in the way that we classify adipocytes and how we view adipose development and differentiation. We have new perspective on the roles played by adipocytes in a variety of homeostatic processes and on the mechanisms used by adipocytes to communicate with other tissues. Finally, there has been significant progress in understanding how these relationships are altered during metabolic disease and how they might be manipulated to restore metabolic health.
    Cell 01/2014; 156(1-2):20-44. · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) regulates metabolic genes in skeletal muscle and contributes to the response of muscle to exercise. Muscle PGC-1α transgenic expression and exercise both increase the expression of thermogenic genes within white adipose. How the PGC-1α-mediated response to exercise in muscle conveys signals to other tissues remains incompletely defined. We employed a metabolomic approach to examine metabolites secreted from myocytes with forced expression of PGC-1α, and identified β-aminoisobutyric acid (BAIBA) as a small molecule myokine. BAIBA increases the expression of brown adipocyte-specific genes in white adipocytes and β-oxidation in hepatocytes both in vitro and in vivo through a PPARα-mediated mechanism, induces a brown adipose-like phenotype in human pluripotent stem cells, and improves glucose homeostasis in mice. In humans, plasma BAIBA concentrations are increased with exercise and inversely associated with metabolic risk factors. BAIBA may thus contribute to exercise-induced protection from metabolic diseases.
    Cell metabolism 01/2014; 19(1):96-108. · 17.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exercise can improve cognitive function and has been linked to the increased expression of brain-derived neurotrophic factor (BDNF). However, the underlying molecular mechanisms driving the elevation of this neurotrophin remain unknown. Here we show that FNDC5, a previously identified muscle protein that is induced in exercise and is cleaved and secreted as irisin, is also elevated by endurance exercise in the hippocampus of mice. Neuronal Fndc5 gene expression is regulated by PGC-1α, and Pgc1a(-/-) mice show reduced Fndc5 expression in the brain. Forced expression of FNDC5 in primary cortical neurons increases Bdnf expression, whereas RNAi-mediated knockdown of FNDC5 reduces Bdnf. Importantly, peripheral delivery of FNDC5 to the liver via adenoviral vectors, resulting in elevated blood irisin, induces expression of Bdnf and other neuroprotective genes in the hippocampus. Taken together, our findings link endurance exercise and the important metabolic mediators, PGC-1α and FNDC5, with BDNF expression in the brain.
    Cell metabolism 10/2013; · 17.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Application of typical HDX methods to examine intrinsically disordered proteins (IDP), proteins that are natively unstructured and highly dynamic at physiological pH, is limited because of the rapid exchange of unprotected amide hydrogens with solvent. The exchange rates of these fast exchanging amides are usually faster than the shortest time scale (10 s) employed in typical automated HDX-MS experiments. Considering the functional importance of IDPs and their association with many diseases, it is valuable to develop methods that allow the study of solution dynamics of these proteins as well as the ability to probe the interaction of IDPs with their wide range of binding partners. Here, we report the application of time window expansion to the millisecond range by altering the on-exchange pH of the HDX experiment to study a well-characterized IDP; the activation domain of the nuclear receptor coactivator, peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α). This method enabled mapping the regions of PGC-1α that are stabilized upon binding the ligand binding domain (LBD) of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ). We further demonstrate the method's applicability to other binding partners of the IDP PGC-1α and pave the way for characterizing many other biologically important ID proteins.
    Journal of the American Society for Mass Spectrometry 07/2013; · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Classic brown fat and inducible beige fat both dissipate chemical energy in the form of heat through the actions of mitochondrial uncoupling protein 1. This nonshivering thermogenesis is crucial for mammals as a defense against cold and obesity/diabetes. Cold is known to act indirectly through the sympathetic nervous systems and β-adrenergic signaling, but here we report that cool temperature (27-33 °C) can directly activate a thermogenic gene program in adipocytes in a cell-autonomous manner. White and beige fat cells respond to cool temperatures, but classic brown fat cells do not. Importantly, this activation in isolated cells is independent of the canonical cAMP/Protein Kinase A/cAMP response element-binding protein pathway downstream of the β-adrenergic receptors. These findings provide an unusual insight into the role of adipose tissues in thermoregulation, as well as an alternative way to target nonshivering thermogenesis for treatment of obesity and metabolic diseases.
    Proceedings of the National Academy of Sciences 07/2013; · 9.81 Impact Factor
  • Source
    Bruce M Spiegelman
    [Show abstract] [Hide abstract]
    ABSTRACT: The Banting Medal for Scientific Achievement Award is the American Diabetes Association's highest scientific award and honors an individual who has made significant, long-term contributions to the understanding of diabetes, its treatment, and/or prevention.The award is named after Nobel Prize winner Sir Frederick Banting, who codiscovered insulin treatment for diabetes. Bruce M. Spiegelman, PhD, of Harvard Medical School and the Dana-Farber Cancer Institute in Boston, received the American Diabetes Association's Banting Medal for Scientific Achievement at the Association's 72nd Scientific Sessions, 8-12 June 2012, Philadelphia, Pennsylvania. He presented the Banting Lecture, "Transcriptional Control of Adipogenesis-Toward a New Generation of Therapeutics for Metabolic Disease," on Sunday, 10 June 2012. In his lecture, Dr. Spiegelman described the discovery of several transcriptional components that control adipose cell development: PPAR-γ, PGC1-α, and PRDM16. He also described the cloning and characterization of beige fat cells, the thermogenic "brown-like" cells that can develop in white fat depots. Lastly, Dr. Spiegelman discussed irisin, a newly discovered regulatory hormone that converts white fat into the more thermogenic beige fat. Dr. Spiegelman's research has found that irisin, which is induced by exercise, appears to activate some of the same health benefits as exercise, including improvement of glycemic control. Understanding the regulation of adipose tissue, white, brown, and beige, can potentially lead to the development of a new generation of therapeutics for diabetes prevention and treatment.
    Diabetes 06/2013; 62(6):1774-1782. · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PGC-1α is a key transcription coactivator regulating energy metabolism in a tissue-specific manner. PGC-1α expression is tightly regulated, it is a highly labile protein, and it interacts with various proteins- the known attributes of intrinsically disordered proteins (IDPs). In this study, we characterize PGC-1α as an IDP and demonstrate that it is susceptible to 20S proteasomal degradation by default. We further demonstrate that PGC-1α degradation is inhibited by NQO1, a 20S-gatekeeper protein. NQO1 binds and protects PGC-1α from degradation in an NADH-dependent manner. Using different cellular physiological settings we also demonstrate that NQO1-mediated PGC-1α protection plays an important role in controlling both basal and physiologically induced PGC-1α protein level and activity. Our findings link NQO1, a cellular redox sensor, to the metabolite-sensing network that tunes PGC-1α expression and activity in regulating energy metabolism.
    Molecular and cellular biology 05/2013; · 6.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells reprogram their metabolism using different strategies to meet energy and anabolic demands to maintain growth and survival. Understanding the molecular and genetic determinants of these metabolic programs is critical to successfully exploit them for therapy. Here, we report that the oncogenic melanocyte lineage-specification transcription factor MITF drives PGC1α (PPARGC1A) overexpression in a subset of human melanomas and derived cell lines. Functionally, PGC1α positive melanoma cells exhibit increased mitochondrial energy metabolism and reactive oxygen species (ROS) detoxification capacities that enable survival under oxidative stress conditions. Conversely, PGC1α negative melanoma cells are more glycolytic and sensitive to ROS-inducing drugs. These results demonstrate that differences in PGC1α levels in melanoma tumors have a profound impact in their metabolism, biology, and drug sensitivity.
    Cancer cell 02/2013; · 25.29 Impact Factor
  • Jun Wu, Paul Cohen, Bruce M Spiegelman
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the most promising areas in the therapeutics for metabolic diseases centers around activation of the pathways of energy expenditure. Brown adipose tissue is a particularly appealing target for increasing energy expenditure, given its amazing capacity to transform chemical energy into heat. In addition to classical brown adipose tissue, the last few years have seen great advances in our understanding of inducible thermogenic adipose tissue, also referred to as beige fat. A deeper understanding of the molecular processes involved in the development and function of these cell types may lead to new therapeutics for obesity, diabetes, and other metabolic diseases.
    Genes & development 02/2013; 27(3):234-50. · 12.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PGC-1α is a transcriptional coactivator induced by exercise that gives muscle many of the best known adaptations to endurance-type exercise but has no effects on muscle strength or hypertrophy. We have identified a form of PGC-1α (PGC-1α4) that results from alternative promoter usage and splicing of the primary transcript. PGC-1α4 is highly expressed in exercised muscle but does not regulate most known PGC-1α targets such as the mitochondrial OXPHOS genes. Rather, it specifically induces IGF1 and represses myostatin, and expression of PGC-1α4 in vitro and in vivo induces robust skeletal muscle hypertrophy. Importantly, mice with skeletal muscle-specific transgenic expression of PGC-1α4 show increased muscle mass and strength and dramatic resistance to the muscle wasting of cancer cachexia. Expression of PGC-1α4 is preferentially induced in mouse and human muscle during resistance exercise. These studies identify a PGC-1α protein that regulates and coordinates factors involved in skeletal muscle hypertrophy.
    Cell 12/2012; 151(6):1319-31. · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PGC1α is a key transcriptional coregulator of oxidative metabolism and thermogenesis. Through a high-throughput chemical screen, we found that molecules antagonizing the TRPVs (transient receptor potential vanilloid), a family of ion channels, induced PGC1α expression in adipocytes. In particular, TRPV4 negatively regulated the expression of PGC1α, UCP1, and cellular respiration. Additionally, it potently controlled the expression of multiple proinflammatory genes involved in the development of insulin resistance. Mice with a null mutation for TRPV4 or wild-type mice treated with a TRPV4 antagonist showed elevated thermogenesis in adipose tissues and were protected from diet-induced obesity, adipose inflammation, and insulin resistance. This role of TRPV4 as a cell-autonomous mediator for both the thermogenic and proinflammatory programs in adipocytes could offer a target for treating obesity and related metabolic diseases.
    Cell 09/2012; 151(1):96-110. · 31.96 Impact Factor
  • Nature 08/2012; 488(7413):10-. · 38.60 Impact Factor

Publication Stats

60k Citations
4,261.62 Total Impact Points

Institutions

  • 1987–2014
    • Dana-Farber Cancer Institute
      • Department of Cancer Biology
      Boston, Massachusetts, United States
  • 1986–2014
    • Harvard Medical School
      • • Department of Cell Biology
      • • Department of Biological Chemistry and Molecular Pharmacology
      • • Department of Pathology
      Boston, Massachusetts, United States
  • 2013
    • The Scripps Research Institute
      • Department of Molecular Therapeutics
      La Jolla, CA, United States
  • 1995–2012
    • Beth Israel Deaconess Medical Center
      • • Department of Medicine
      • • Division of Endocrinology, Diabetes and Metabolism
      • • Department of Pathology
      Boston, MA, United States
  • 2011
    • Universität Basel
      Bâle, Basel-City, Switzerland
    • Hospital of the University of Pennsylvania
      Philadelphia, Pennsylvania, United States
  • 2009
    • University of Miami Miller School of Medicine
      • Department of Neurology
      Miami, FL, United States
  • 2008
    • University of Zurich
      • Center for Integrative Human Physiology
      Zürich, ZH, Switzerland
    • University of Miami
      • Department of Neurology
      Coral Gables, FL, United States
    • Boston University
      • Department of Biochemistry
      Boston, MA, United States
  • 1995–2008
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 2004
    • Massachusetts Institute of Technology
      Cambridge, Massachusetts, United States
  • 1990–2003
    • The Rockefeller University
      • Laboratory of Biochemistry and Molecular Biology
      New York City, NY, United States
  • 1997–1999
    • University of California, Los Angeles
      • Department of Biological Chemistry
      Los Angeles, CA, United States
  • 1989–1995
    • University of Illinois at Chicago
      Chicago, Illinois, United States
  • 1988
    • Tufts University
      Georgia, United States
    • Roche Institute of Molecular Biology
      Nutley, New Jersey, United States
  • 1979
    • Princeton University
      Princeton, New Jersey, United States