Henry R Buswell

University of Utah, Salt Lake City, Utah, United States

Are you Henry R Buswell?

Claim your profile

Publications (2)5.56 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand the structure-function relationship in the postinfarcted myocardium in rabbits, we induced cardiac ischemia by ligating the left circumflex coronary artery. Sham controls underwent thoracotomy only. At 7 and 30 d after ligation, cardiac MRI was conducted by using pulse-oxymetry-gated cine acquisition to provide complete phases of the heartbeat. The rabbits were anesthetized under 1.5% isoflurane ventilation, and ultrafast techniques made breath-hold 3D coverage in different cardiac axes feasible. Viability imaging was performed after intravenous injection of 0.15 mmol/kg gadolinium to assess the extent of infarction. Data (n ≥ 6) are presented as mean ± SEM and analyzed by ANOVA and ANCOVA. In postligation rabbits, end-systolic (mean ± SEM, 2.3 ± 0.3 mL) and end-diastolic (4.2 ± 0.4 mL) volumes were increased compared with preligation values (end-systolic, 1.1 ± 0.1 mL; end-diastolic, 2.98 ± 0.2 mL). Ejection fraction was influenced adversely by the presence of scar tissue at both 7 and 30 d after ligation and apparently nonlinear with the heart rate. Cardiac force was increased in the basal region in both end-systole and end-diastole in postligation hearts but progressively decreased toward the apex. Late gadolinium enhancement delineated 15.2 ± 5.8% myocardial infarction at 7 d after ligation and 14.5 ± 5.8% at 30 d, with limited wall motion and wall thinness. Compensatory wall thickening was present in the basal region when compared with that in preligation hearts. MRI offers detailed spatial resolution and tissue characterization after myocardial infarction.
    Comparative medicine 01/2012; 62(2):116-23. · 1.12 Impact Factor
  • Source
    Journal of Cardiovascular Magnetic Resonance 01/2010; · 4.44 Impact Factor