Jose A Gomez

Duke University Medical Center, Durham, NC, United States

Are you Jose A Gomez?

Claim your profile

Publications (6)56.66 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a wide array of kidney diseases, type 1 angiotensin (AT1) receptors are present on the immune cells that infiltrate the renal interstitium. Here, we examined the actions of AT1 receptors on macrophages in progressive renal fibrosis and found that macrophage-specific AT1 receptor deficiency exacerbates kidney fibrosis induced by unilateral ureteral obstruction (UUO). Macrophages isolated from obstructed kidneys of mice lacking AT1 receptors solely on macrophages had heightened expression of proinflammatory M1 cytokines, including IL-1. Evaluation of isolated AT1 receptor-deficient macrophages confirmed the propensity of these cells to produce exaggerated levels of M1 cytokines, which led to more severe renal epithelial cell damage via IL-1 receptor activation in coculture compared with WT macrophages. A murine kidney crosstransplantation concomitant with UUO model revealed that augmentation of renal fibrosis instigated by AT1 receptor-deficient macrophages is mediated by IL-1 receptor stimulation in the kidney. This study indicates that a key role of AT1 receptors on macrophages is to protect the kidney from fibrosis by limiting activation of IL-1 receptors in the kidney.
    The Journal of clinical investigation 04/2014; · 15.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The renin-angiotensin-aldosterone system (RAAS) regulates BP and salt-volume homeostasis. Juxtaglomerular (JG) cells synthesize and release renin, which is the first and rate-limiting step in the RAAS. Intense pathologic stresses cause a dramatic increase in the number of renin-producing cells in the kidney, termed JG cell recruitment, but how this occurs is not fully understood. Here, we isolated renal CD44(+) mesenchymal stem cell (MSC)-like cells and found that they differentiated into JG-like renin-expressing cells both in vitro and in vivo. Sodium depletion and captopril led to activation and differentiation of these cells into renin-expressing cells in the adult kidney. In summary, CD44(+) MSC-like cells exist in the adult kidney and can differentiate into JG-like renin-producing cells under conditions that promote JG cell recruitment.
    Journal of the American Society of Nephrology 06/2013; · 8.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stem cells (MSCs) transplanted into injured myocardium promote repair through paracrine mechanisms. We have previously shown that MSCs overexpressing AKT1 (Akt-MSCs) exhibit enhanced properties for cardiac repair. In this study, we investigated the relevance of Abi3bp towards MSC biology. Abi3bp formed extracellular deposits with expression controlled by Akt1 and ubiquitin-mediated degradation. Abi3bp knockdown/knockout stabilized focal adhesions and promoted stress-fiber formation. Furthermore, MSCs from Abi3bp knockout mice displayed severe deficiencies in osteogenic and adipogenic differentiation. Knockout or stable knockdown of Abi3bp increased MSC and Akt-MSC proliferation, promoting S-phase entry via cyclin-d1, ERK1/2 and Src. Upon Abi3bp binding to integrin-β1 Src associated with paxillin which inhibited proliferation. In vivo, Abi3bp knockout increased MSC number and proliferation in bone marrow, lung, and liver. In summary, we have identified a novel extracellular matrix protein necessary for the switch from proliferation to differentiation in MSCs.
    Stem Cells 05/2013; · 7.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human clinical trials using type 1 angiotensin (AT(1)) receptor antagonists indicate that angiotensin II is a critical mediator of cardiovascular and renal disease. However, recent studies have suggested that individual tissue pools of AT(1) receptors may have divergent effects on target organ damage in hypertension. We examined the role of AT(1) receptors on T lymphocytes in the pathogenesis of hypertension and its complications. Deficiency of AT(1) receptors on T cells potentiated kidney injury during hypertension with exaggerated renal expression of chemokines and enhanced accumulation of T cells in the kidney. Kidneys and purified CD4(+) T cells from "T cell knockout" mice lacking AT(1) receptors on T lymphocytes had augmented expression of Th1-associated cytokines including interferon-γ and tumor necrosis factor-α. Within T lymphocytes, the transcription factors T-bet and GATA-3 promote differentiation toward the Th1 and Th2 lineages, respectively, and AT(1) receptor-deficient CD4(+) T cells had enhanced T-bet/GATA-3 expression ratios favoring induction of the Th1 response. Inversely, mice that were unable to mount a Th1 response due to T-bet deficiency were protected from kidney injury in our hypertension model. The current studies identify an unexpected role for AT(1) receptors on T lymphocytes to protect the kidney in the setting of hypertension by favorably modulating CD4(+) T helper cell differentiation.
    Circulation Research 04/2012; 110(12):1604-17. · 11.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Podocytes are highly differentiated cells that play an important role in maintaining glomerular filtration barrier integrity; a function regulated by small GTPase proteins of the Rho family. To investigate the role of Rho A in podocyte biology, we created transgenic mice expressing doxycycline-inducible constitutively active (V14 Rho) or dominant-negative Rho A (N19 Rho) in podocytes. Specific induction of either Rho A construct in podocytes caused albuminuria and foot process effacement along with disruption of the actin cytoskeleton as evidenced by decreased expression of the actin-associated protein synaptopodin. The mechanisms of these adverse effects, however, appeared to be different. Active V14 Rho enhanced actin polymerization, caused a reduction in nephrin mRNA and protein levels, promoted podocyte apoptosis, and decreased endogenous Rho A levels. In contrast, the dominant-negative N19 Rho caused a loss of podocyte stress fibers, did not alter the expression of either nephrin or Rho A, and did not cause podocyte apoptosis. Thus, our findings suggest that Rho A plays an important role in maintaining the integrity of the glomerular filtration barrier under basal conditions, but enhancement of Rho A activity above basal levels promotes podocyte injury.
    Kidney International 01/2012; 81(11):1075-85. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of stem cells for tissue regeneration and repair is advancing both at the bench and bedside. Stem cells isolated from bone marrow are currently being tested for their therapeutic potential in a variety of clinical conditions including cardiovascular injury, kidney failure, cancer, and neurological and bone disorders. Despite the advantages, stem cell therapy is still limited by low survival, engraftment, and homing to damage area as well as inefficiencies in differentiating into fully functional tissues. Genetic engineering of mesenchymal stem cells is being explored as a means to circumvent some of these problems. This review presents the current understanding of the use of genetically engineered mesenchymal stem cells in human disease therapy with emphasis on genetic modifications aimed to improve survival, homing, angiogenesis, and heart function after myocardial infarction. Advancements in other disease areas are also discussed.
    Human gene therapy 11/2010; 21(11):1513-26. · 4.20 Impact Factor