Meeyoung Park

Hallym University, Sŏul, Seoul, South Korea

Are you Meeyoung Park?

Claim your profile

Publications (11)55.83 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is an oxidative stress-mediated neurodegenerative disorder caused by selective dopaminergic neuronal death in the midbrain substantia nigra. Paraoxonase 1 (PON1) is a potent inhibitor of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) against oxidation by destroying biologically active phospholipids with potential protective effects against oxidative stress-induced inflammatory disorders. In a previous study, we constructed protein transduction domain (PTD) fusion PEP-1-PON1 protein to transduce PON1 into cells and tissue. In this study, we examined the role of transduced PEP-1-PON1 protein in repressing oxidative stress-mediated inflammatory response in microglial BV2 cells after exposure to lipopolysaccharide (LPS). Moreover, we identified the functions of transduced PEP-1-PON1 proteins which include, mitigating mitochondrial damage, decreasing reactive oxidative species (ROS) production, matrix metalloproteinase-9 (MMP-9) expression and protecting against 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity in SH-SY5Y cells. Furthermore, transduced PEP-1-PON1 protein reduced MMP-9 expression and protected against dopaminergic neuronal cell death in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Taken together, these results suggest a promising therapeutic application of PEP-1-PON1 proteins against PD and other inflammation and oxidative stress-related neuronal diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Biomaterials 06/2015; 64:45-56. DOI:10.1016/j.biomaterials.2015.06.015 · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Excessive reactive oxygen species (ROS) production plays a crucial role in causing various diseases, including inflammatory disorders. The activation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-κB) signaling is implicated in stimulating inflammatory response and cytokines. Peroxiredoxin 2 (Prx2) is a 2-cysteine (Cys) peroxiredoxin capable of removing endogenous hydrogen peroxide (H2O2). PEP-1 peptide, a protein transduction domain, consists of three domains which are used to transduce exogenous therapeutic proteins into cells. The correlation between effectively transduced PEP-1-Prx2 and ROS-mediated inflammatory response is not clear. In the present study, we investigated the protective effects of cell permeable PEP-1-Prx2 on oxidative stress-induced inflammatory activity in Raw 264.7 cells and in a mouse ear edema model after exposure to lipopolysaccharides (LPS) or 12-O-tetradecanoylphorbol-13-actate (TPA). Transduced PEP-1-Prx2 suppressed intracellular ROS accumulation and inhibited the activity of MAPKs and NF-κB signaling that led to the suppression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and cytokines in LPS-induced Raw 264.7 cells and TPA-induced mouse ear edema model. Given these results, we propose that PEP-1-Prx2 has therapeutic potential in the prevention of inflammatory disorders.
    International Immunopharmacology 09/2014; 23(2). DOI:10.1016/j.intimp.2014.09.008 · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the SO42-/Cl-/OH- exchanger Slc26a2 cause the disease diastrophic dysplasia (DTD), resulting in aberrant bone development and therefore skeletal deformities. DTD is commonly attributed to a lack of chondrocyte SO42- uptake and proteoglycan sulfation. However, the skeletal phenotype of patients with DTD is typified by reduction in cartilage and osteoporosis of the long bones. Chondrocytes of patients with DTD are irregular in size and have a reduced capacity for proliferation and terminal differentiation. This raises the possibility of additional roles for Slc26a2 in chondrocyte function. Here, we examined the roles of Slc26a2 in chondrocyte biology using two distinct systems: mouse progenitor mesenchymal cells differentiated to chondrocytes and freshly isolated mouse articular chondrocytes differentiated into hypertrophic chondrocytes. Slc26a2 expression was manipulated acutely by delivery of Slc26a2 or shSlc26a2 with lentiviral vectors. We demonstrate that slc26a2 is essential for chondrocyte proliferation and differentiation, and for proteoglycan synthesis. Slc26a2 also regulates the terminal stage of chondrocyte cell size expansion. These findings reveal multiple roles for Slc26a2 in chondrocyte biology and emphasize the importance of Slc26a2-mediated protein sulfation in cell signaling, which may account for the complex phenotype of DTD.
    Journal of Biological Chemistry 12/2013; 289(4). DOI:10.1074/jbc.M113.503466 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A 34-KD protein encoded by the SEI-1 gene (p34SEI‑1), is a relatively recently discovered oncoprotein that has multiple important biological functions. Our data show that p34SEI-1 enhances cancer cell survival and promotes tumorigenesis by downregulating the tumor suppressor PTEN, a negative regulator of the PI3K/AKT signaling pathway, and therefore activating the PI3K/AKT signaling pathway. In this process, p34SEI-1 positively affects NEDD4-1 gene expression both at the transcriptional and protein levels. Furthermore, the expression levels of p34SEI-1 and NEDD4-1 were found to be coordinated in tumor tissues obtained from patients with breast cancer. We also show that p34SEI-1 affects the subcellular localization of PTEN.
    International Journal of Oncology 08/2013; 43(5). DOI:10.3892/ijo.2013.2064 · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined that the protective effects of ANX1 on 12-O-tetradecanoylphorbol- 13-acetate (TPA)-induced skin inflammation in animal models using a Tat-ANX1 protein. Topical application of the Tat-ANX1 protein markedly inhibited TPAinduced ear edema and expression levels of cyclooxygenase-2 (COX-2) as well as pro-inflammatory cytokines such as interleukin- 1 beta (IL-1 β), IL-6, and tumor necrosis factor-alpha (TNF-α). Also, application of Tat-ANX1 protein significantly inhibited nuclear translocation of nuclear factor-kappa B (NF-κ B) and phosphorylation of p38 and extracellular signalregulated kinase (ERK) mitogen-activated protein kinase (MAPK) in TPA-treated mice ears. The results indicate that Tat-ANX1 protein inhibits the inflammatory response by blocking NF-κ B and MAPK activation in TPA-induced mice ears. Therefore, the Tat-ANX1 protein may be useful as a therapeutic agent against inflammatory skin diseases.
    BMB reports 06/2012; 45(6):354-9. DOI:10.5483/BMBRep.2012.45.6.036 · 2.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is a well known neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compact (SN). Although the exact mechanism remains unclear, oxidative stress plays a critical role in the pathogenesis of PD. DJ-1 is a multifunctional protein, a potent antioxidant and chaperone, the loss of function of which is linked to the autosomal recessive early onset of PD. Therefore, we investigated the protective effects of DJ-1 protein against SH-SY5Y cells and in a PD mouse model using a cell permeable Tat-DJ-1 protein. Tat-DJ-1 protein rapidly transduced into the cells and showed a protective effect on 6-hydroxydopamine (6-OHDA)-induced neuronal cell death by reducing the reactive oxygen species (ROS). In addition, we found that Tat-DJ-1 protein protects against dopaminergic neuronal cell death in 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP)-induced PD mouse models. These results suggest that Tat-DJ-1 protein provides a potential therapeutic strategy for against ROS related human diseases including PD.
    Moleculer Cells 04/2012; 33(5):471-8. DOI:10.1007/s10059-012-2255-8 · 2.09 Impact Factor
  • Ehud Ohana · Nikolay Shcheynikov · Meeyoung Park · Shmuel Muallem ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Slc26a2 is a ubiquitously expressed SO(4)(2-) transporter with high expression levels in cartilage and several epithelia. Mutations in SLC26A2 are associated with diastrophic dysplasia. The mechanism by which Slc26a2 transports SO(4)(2-) and the ion gradients that mediate SO(4)(2-) uptake are poorly understood. We report here that Slc26a2 functions as an SO(4)(2-)/2OH(-), SO(4)(2-)/2Cl(-), and SO(4)(2-)/OH(-)/Cl(-) exchanger, depending on the Cl(-) and OH(-) gradients. At inward Cl(-) and outward pH gradients (high Cl(-)(o) and low pH(o)) Slc26a2 functions primarily as an SO(4)(2-)(o)/2OH(-)(i) exchanger. At low Cl(-)(o) and high pH(o) Slc26a2 functions increasingly as an SO(4)(2-)(o)/2Cl(-)(i) exchanger. The reverse is observed for SO(4)(2-)(i)/2OH(-)(o) and SO(4)(2-)(i)/2Cl(-)(o) exchange. Slc26a2 also exchanges Cl(-) for I(-), Br(-), and NO(3)(-) and Cl(-)(o) competes with SO(4)(2-) on the transport site. Interestingly, Slc26a2 is regulated by an extracellular anion site, required to activate SO(4)(2-)(i)/2OH(-)(o) exchange. Slc26a2 can transport oxalate in exchange for OH(-) and/or Cl(-) with properties similar to SO(4)(2-) transport. Modeling of the Slc26a2 transmembrane domain (TMD) structure identified a conserved extracellular sequence (367)GFXXP(371) between TMD7 and TMD8 close to the conserved Glu(417) in the permeation pathway. Mutation of Glu(417) eliminated transport by Slc26a2, whereas mutation of Phe(368) increased the affinity for SO(4)(2-)(o) 8-fold while reducing the affinity for Cl(-)(o) 2 fold, but without affecting regulation by Cl(-)(o). These findings clarify the mechanism of net SO(4)(2-) transport and describe a novel regulation of Slc26a2 by an extracellular anion binding site and should help in further understanding aberrant SLC26A2 function in diastrophic dysplasia.
    Journal of Biological Chemistry 12/2011; 287(7):5122-32. DOI:10.1074/jbc.M111.297192 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The SLC26 transporters are a family of mostly luminal Cl- and HCO3- transporters. The transport mechanism and the Cl-/HCO3- stoichiometry are not known for any member of the family. To address these questions, we simultaneously measured the HCO3- and Cl- fluxes and the current or membrane potential of slc26a3 and slc26a6 expressed in Xenopus laevis oocytes and the current of the transporters expressed in human embryonic kidney 293 cells. slc26a3 mediates a coupled 2Cl-/1HCO3- exchanger. The membrane potential modulated the apparent affinity for extracellular Cl- of Cl-/HCO3- exchange by slc26a3. Interestingly, the replacement of Cl- with NO3- or SCN- uncoupled the transport, with large NO3- and SCN- currents and low HCO3- transport. An apparent uncoupled current was also developed during the incubation of slc26a3-expressing oocytes in HCO3--buffered Cl--free media. These findings were used to develop a turnover cycle for Cl- and HCO3- transport by slc26a3. Cl- and HCO3- flux measurements revealed that slc26a6 mediates a 1Cl-/2HCO3- exchange. Accordingly, holding the membrane potential at 40 and -100 mV accelerated and inhibited, respectively, Cl--mediated HCO3- influx, and holding the membrane potential at -100 mV increased HCO3--mediated Cl- influx. These findings indicate that slc26a6 functions as a coupled 1Cl-/2HCO3- exchanger. The significance of isoform-specific Cl- and HCO3- transport stoichiometry by slc26a3 and slc26a6 is discussed in the context of diseases of epithelial Cl- absorption and HCO3- secretion.
    The Journal of General Physiology 06/2006; 127(5):511-24. DOI:10.1085/jgp.200509392 · 4.79 Impact Factor
  • Source
    Meeyoung Park · Qin Li · Nikolay Shcheynikov · Shmuel Muallem · Weizong Zeng ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Boron is an abundant mineral essential for the life cycle of plants and may play a role in animal development and growth. Very little is known about boron homeostasis in plant and animal cells and the physiological roles of boron in animals. The recent identification of boron transporters, BOR1 in plants and NaBC1 in mammals, and that NaBC1 functions as an electrogenic Na+-coupled borate transporter essential for cell growth and proliferation open the way to probe the roles of boron in cellular function and physiology.
    Cell cycle (Georgetown, Tex.) 02/2005; 4(1):24-6. DOI:10.4161/cc.4.1.1394 · 4.57 Impact Factor
  • Source
    Meeyoung Park · Qin Li · Nikolay Shcheynikov · Weizong Zeng · Shmuel Muallem ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Boron is a vital micronutrient in plants and may be essential for animal growth and development. Whereas the role of boron in the life cycle of plants is well documented, nothing is known about boron homeostasis and function in animal cells. NaBC1, the mammalian homolog of AtBor1, is a borate transporter. In the absence of borate, NaBC1 conducts Na(+) and OH(-) (H(+)), while in the presence of borate, NaBC1 functions as an electrogenic, voltage-regulated, Na(+)-coupled B(OH)(4)(-) transporter. At low concentrations, borate activated the MAPK pathway to stimulate cell growth and proliferation, and at high concentrations, it was toxic. Accordingly, overexpression of NaBC1 shifted both effects of borate to the left, whereas knockdown of NaBC1 halted cell growth and proliferation. These findings may reveal a previously unrecognized role for NaBC1 in borate homeostasis and open the way to better understanding of the many presumed physiological roles of borate in animals.
    Molecular Cell 12/2004; 16(3):331-41. DOI:10.1016/j.molcel.2004.09.030 · 14.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cystic fibrosis transmembrane conductance regulator (CFTR) regulates both HCO(3)(-) secretion and HCO(3)(-) salvage in secretory epithelia. At least two luminal transporters mediate HCO(3)(-) salvage, the Na(+)/H(+) exchanger (NHE3) and the Na(+)-HCO(3)(-) cotransport (NBC3). In a previous work, we show that CFTR interacts with NHE3 to regulate its activity (Ahn, W., Kim, K. W., Lee, J. A., Kim, J. Y., Choi, J. Y., Moe, O. M., Milgram, S. L., Muallem, S., and Lee, M. G. (2001) J. Biol. Chem. 276, 17236-17243). In this work, we report that transient or stable expression of human NBC3 (hNBC3) in HEK cells resulted in a Na(+)-dependent, DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid)- and 5-ethylisopropylamiloride-insensitive HCO(3)(-) transport. Stimulation of CFTR with forskolin markedly inhibited NBC3 activity. This inhibition was prevented by the inhibition of protein kinase A. NBC3 and CFTR could be reciprocally coimmunoprecipitated from transfected HEK cells and from the native pancreas and submandibular and parotid glands. Precipitation of NBC3 or CFTR from transfected HEK293 cells and from the pancreas and submandibular gland also coimmunoprecipitated EBP50. Glutathione S-transferase-EBP50 pulled down CFTR and hNBC3 from cell lysates when expressed individually and as a complex when expressed together. Notably, the deletion of the C-terminal PDZ binding motifs of CFTR or hNBC3 prevented coimmunoprecipitation of the proteins and inhibition of hNBC3 activity by CFTR. We conclude that CFTR and NBC3 reside in the same HCO(3)(-)-transporting complex with the aid of PDZ domain-containing scaffolds, and this interaction is essential for regulation of NBC3 activity by CFTR. Furthermore, these findings add additional evidence for the suggestion that CFTR regulates the overall trans-cellular HCO(3)(-) transport by regulating the activity of all luminal HCO(3)(-) secretion and salvage mechanisms of secretory epithelial cells.
    Journal of Biological Chemistry 01/2003; 277(52):50503-9. DOI:10.1074/jbc.M201862200 · 4.57 Impact Factor

Publication Stats

410 Citations
55.83 Total Impact Points


  • 2012-2015
    • Hallym University
      • Department of Biomedical Science
      Sŏul, Seoul, South Korea
  • 2013
    • Sookmyung Women's University
      • Department of Biological Science
      Sŏul, Seoul, South Korea
  • 2011
    • National Institutes of Health
      • Branch of Molecular Physiology and Therapeutics
      베서스다, Maryland, United States
  • 2004-2006
    • University of Texas Southwestern Medical Center
      • Department of Physiology
      Dallas, TX, United States