Shizuka Nakashima

Saitama University, Saitama, Saitama-ken, Japan

Are you Shizuka Nakashima?

Claim your profile

Publications (3)4.68 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arsenic compounds that are often found in drinking water increase the risk of developmental brain disorders. In this study, we performed live imaging analyses of Neuro-2a cells expressing SCAT3, a caspase-3 cleavage peptide sequence linking two fluorescent proteins; enhanced cyan fluorescence protein (ECFP) and Venus, to determine whether sodium arsenite (NaAsO(2); 0, 1, 5, or 10μM) affects both neurite outgrowth and/or induces apoptosis with the same doses and in the same cell cultures. We observed that the area ratio of neurite to cell body in SCAT3-expressing cells was significantly reduced by 5 and 10μM NaAsO(2), but not by 1μM, although the emission ratio of ECFP to Venus, an endpoint of caspase-3 activity, was not changed. However, cytological assay using apoptotic and necrotic markers resulted in that apoptosis, but not necrosis, was significantly induced in Neuro-2a cells when NaAsO(2) exposure continued after the significant effects of NaAsO(2) on neurite outgrowth were found by live imaging. These results suggested that neurite outgrowth was suppressed by NaAsO(2) prior to NaAsO(2)-induced apoptosis. Next, we examined the effects of NaAsO(2) on cytoskeletal gene expression in Neuro-2a cells. NaAsO(2) increased the mRNA levels of the light and medium subunits of neurofilament and decreased the mRNA levels of tau and tubulin in a dose-dependent manner; no significant effect was found in the mRNA levels of the heavy subunit of neurofilament, microtubule-associated protein 2, or actin. The changes in cytoskeletal gene expression are likely responsible for the inhibitory effects of NaAsO(2) on neurite outgrowth.
    NeuroToxicology 09/2012; · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Postnatal apoptosis is involved in formation of the sex difference in neuron number of the sexually dimorphic nucleus of the preoptic area (SDN-POA) in rats. In this study, we examined the origin of neurons that die with apoptosis on the postnatal period to exhibit the sex difference in neuron number of the SDN-POA. First, we measured the number of cells that were labeled with 5-bromo-2'-deoxyuridine (BrdU) on embryonic day (ED) 17, ED18, and ED19 in the SDN-POA of rats on postnatal day (PD) 4 and PD8. The SDN-POA had many more cells labeled with BrdU on ED17 and ED18 than those on ED19. Significantly fewer cells labeled with BrdU on ED18 in the female SDN-POA from PD4 to PD8 resulted in a significant sex difference in the number at PD8. Next, combination analyses of BrdU-labeling and immunohistochemistry for single-stranded DNA (ssDNA), an apoptotic marker, were succeeded to investigate whether SDN-POA neurons generated during ED17-18 were removed by apoptosis. Many more ssDNA-immunoreactive cells that had been labeled with BrdU during ED17-18 were found in the SDN-POA of PD8 females, but few in the SDN-POA of PD8 males and PD4 females and males. These results suggest that the sex difference in the number of SDN-POA neurons generated during the late fetal period was caused by postnatal apoptosis.
    Neuroscience Letters 04/2012; 516(2):290-5. · 2.03 Impact Factor
  • Shizuka Nakashima, Shinji Tsukahara
    Neuroscience Research - NEUROSCI RES. 01/2011; 71.