Yibao Wang

University of Pittsburgh, Pittsburgh, Pennsylvania, United States

Are you Yibao Wang?

Claim your profile

Publications (7)22.47 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The structure and function of the arcuate fascicle is still controversial. The goal of this study was to investigate the asymmetry, connectivity, and segmentation patterns of the arcuate fascicle. We employed diffusion spectrum imaging reconstructed by generalized q-sampling and we applied both a subject-specific approach (10 subjects) and a template approach (q-space diffeomorphic reconstruction of 30 subjects). We complemented our imaging investigation with fiber microdissection of five post-mortem human brains. Our results confirmed the highly leftward asymmetry of the arcuate fascicle. In the template, the left arcuate had a volume twice as large as the right one, and the left superior temporal gyrus provided five times more volume of fibers than its counterpart. We identified four cortical frontal areas of termination: pars opercularis, pars triangularis, ventral precentral gyrus, and caudal middle frontal gyrus. We found clear asymmetry of the frontal terminations at pars opercularis and ventral precentral gyrus. The analysis of patterns of connectivity revealed the existence of a strong structural segmentation in the left arcuate, but not in the right one. The left arcuate fascicle is formed by an inner or ventral pathway, which interconnects pars opercularis with superior and rostral middle temporal gyri; and an outer or dorsal pathway, which interconnects ventral precentral and caudal middle frontal gyri with caudal middle and inferior temporal gyri. The fiber microdissection results provided further support to our tractography studies. We propose the existence of primary and supplementary language pathways within the dominant arcuate fascicle with potentially distinct functional and lesional features.
    Brain Structure and Function 03/2014; 220(3). DOI:10.1007/s00429-014-0751-7 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffusion MRI tractography has emerged as a useful and popular tool for mapping connections between brain regions. In this study, we examined the performance of quantitative anisotropy (QA) in facilitating deterministic fiber tracking. Two phantom studies were conducted. The first phantom study examined the susceptibility of fractional anisotropy (FA), generalized factional anisotropy (GFA), and QA to various partial volume effects. The second phantom study examined the spatial resolution of the FA-aided, GFA-aided, and QA-aided tractographies. An in vivo study was conducted to track the arcuate fasciculus, and two neurosurgeons blind to the acquisition and analysis settings were invited to identify false tracks. The performance of QA in assisting fiber tracking was compared with FA, GFA, and anatomical information from T1-weighted images. Our first phantom study showed that QA is less sensitive to the partial volume effects of crossing fibers and free water, suggesting that it is a robust index. The second phantom study showed that the QA-aided tractography has better resolution than the FA-aided and GFA-aided tractography. Our in vivo study further showed that the QA-aided tractography outperforms the FA-aided, GFA-aided, and anatomy-aided tractographies. In the shell scheme (HARDI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 30.7%, 32.6%, and 24.45% of the false tracks, respectively, while the QA-aided tractography has 16.2%. In the grid scheme (DSI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 12.3%, 9.0%, and 10.93% of the false tracks, respectively, while the QA-aided tractography has 4.43%. The QA-aided deterministic fiber tracking may assist fiber tracking studies and facilitate the advancement of human connectomics.
    PLoS ONE 01/2014; 9(1). DOI:10.1371/annotation/0f3b12de-8b8b-4dda-9ff4-835b8631e1dc · 3.53 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Diffusion tensor imaging (DTI) tractography enables the in vivo visualization of white matter tracts inside normal brain tissue, which provides the neurosurgeon important information to plan tumor resections. However, DTI is associated with restrictions in the resolution of crossing fibers in the vicinity of the tumor or in edema. We find that generalized q-sampling imaging (GQI) can overcome these difficulties and is advantageous over DTI for the tractography of the fiber bundle in peritumoral edema. OBJECTIVE: To demonstrate the differences between GQI and DTI in the preoperative mapping of fiber tractography in peritumoral edema of cerebral tumors, and discuss the clinical application of GQI in neurosurgical planning. METHODS: Five patients with brain tumors underwent 3-T magnetic resonance imaging scans, and the data were reconstructed by DTI and GQI. We adjusted the parameters and compared the differences between DTI and GQI in visualizing the fiber tracts in the peritumoral edema of cerebral tumors. RESULTS: GQI and DTI showed substantial differences in displaying the nerve fibers in the edema surrounding the tumor. The GQI tractography method could fully display existing intact fibers in the edema, whereas the fiber tracts in edema displayed by DTI tractography were incomplete, missing, or ruptured. CONCLUSION: GQI can visualize the tracts in the peritumoral edema of cerebral tumors better than DTI. Although GQI has many limitations, its future in the preoperative guidance of brain tumor lesions is promising. KEY WORDS: Diffusion tensor imaging, Fiber in edema, Tractography
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffusion tensor imaging (DTI) tractography enables the in vivo visualization of white matter tracts inside normal brain tissue, which provides the neurosurgeon important information to plan tumor resections. However, DTI is associated with restrictions in the resolution of crossing fibers, in the vicinity of the tumor or in edema. We find that generalized q-sampling imaging (GQI) can overcome these difficulties and is advantageous over DTI for the tractography of the fiber bundle in peritumoral edema. To demonstrate the differences between GQI and DTI in the preoperative mapping of fiber tractography in peritumoral edema of cerebral tumors, and discuss the clinical application of GQI in neurosurgical planning. Five patients with brain tumors underwent 3-T magnetic resonance imaging scans, and the data were reconstructed by DTI and GQI. We adjusted the parameters and compared the differences between DTI and GQI in visualizing the fiber tracts in the peritumoral edema of cerebral tumors. GQI and DTI showed substantial differences in displaying the nerve fibers in the edema surrounding the tumor. The GQI tractography method could fully display existing intact fibers in the edema, while the fiber tracts in edema displayed by DTI tractography were incomplete, missing, or ruptured. GQI can visualize the tracts in the peritumoral edema of cerebral tumors better than DTI. Although GQI suffers many limitations, its future in the preoperative guidance of brain tumor lesions is promising.
    Neurosurgery 09/2013; DOI:10.1227/NEU.0000000000000146 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The middle longitudinal fascicle (MdLF) was originally described in the monkey brain as a pathway that interconnects the superior temporal and angular gyri. Only recently have diffusion tensor imaging studies provided some evidence of its existence in humans, with a connectivity pattern similar to that in monkeys and a potential role in the language system. In this study, we combine high-angular-resolution fiber tractography and fiber microdissection techniques to determine the trajectory, cortical connectivity, and a quantitative analysis of the MdLF. Here, we analyze diffusion spectrum imaging (DSI) studies in 6 subjects (subject-specific approach) and in a template of 90 DSI studies (NTU-90 Atlas). Our tractography and microdissection results show that the human MdLF differs significantly from the monkey. Indeed, the human MdLF interconnects the superior temporal gyrus with the superior parietal lobule and parietooccipital region, and has only minor connections with the angular gyrus. On the basis of the roles of these interconnected cortical regions, we hypothesize that, rather than a language-related tract, the MdLF may contribute to the dorsal "where" pathway of the auditory system.
    Cerebral Cortex 08/2012; DOI:10.1093/cercor/bhs225 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-definition fiber tracking (HDFT) is a novel combination of processing, reconstruction, and tractography methods that can track white matter fibers from cortex, through complex fiber crossings, to cortical and subcortical targets with subvoxel resolution. To perform neuroanatomical validation of HDFT and to investigate its neurosurgical applications. Six neurologically healthy adults and 36 patients with brain lesions were studied. Diffusion spectrum imaging data were reconstructed with a Generalized Q-Ball Imaging approach. Fiber dissection studies were performed in 20 human brains, and selected dissection results were compared with tractography. HDFT provides accurate replication of known neuroanatomical features such as the gyral and sulcal folding patterns, the characteristic shape of the claustrum, the segmentation of the thalamic nuclei, the decussation of the superior cerebellar peduncle, the multiple fiber crossing at the centrum semiovale, the complex angulation of the optic radiations, the terminal arborization of the arcuate tract, and the cortical segmentation of the dorsal Broca area. From a clinical perspective, we show that HDFT provides accurate structural connectivity studies in patients with intracerebral lesions, allowing qualitative and quantitative white matter damage assessment, aiding in understanding lesional patterns of white matter structural injury, and facilitating innovative neurosurgical applications. High-grade gliomas produce significant disruption of fibers, and low-grade gliomas cause fiber displacement. Cavernomas cause both displacement and disruption of fibers. Our HDFT approach provides an accurate reconstruction of white matter fiber tracts with unprecedented detail in both the normal and pathological human brain. Further studies to validate the clinical findings are needed.
    Neurosurgery 04/2012; 71(2):430-53. DOI:10.1227/NEU.0b013e3182592faa · 3.03 Impact Factor

Publication Stats

63 Citations
22.47 Total Impact Points

Institutions

  • 2012
    • University of Pittsburgh
      Pittsburgh, Pennsylvania, United States