M. Rapp

Leibniz-Institute of Atmospheric Physics, Rostock, Mecklenburg-Vorpommern, Germany

Are you M. Rapp?

Claim your profile

Publications (202)237.15 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-term observations from medium-frequency and meteor radars (1993-2012) and rocket soundings (1979-1990 and 2002-2007) are used to study mesosphere lower thermosphere (MLT) zonal wind variations in relation to the stratospheric winds over Northern low-latitudes. The combined dataset provides a complete height profile of amplitude of semiannual oscillation (SAO) up to 100 km, with an exception around 75-80 km. The SAO signal has maxima around 50 km and 82 km and a minimum around 65 km. The MLT zonal winds show remarkable inter-annual variability during Northern hemispheric spring equinox and much less during fall equinox. Zonal wind mesospheric spring equinox enhancements (MSEE) appear with a periodicity of 2-3 years suggesting a modulation by the quasi-biennial oscillation, which we identified with the strength of stratospheric westward winds. Out of 20 years of observations, the stratospheric westward winds are strong during 11 years (non-MSEE) and weak during 9 years. Six of these nine years show large MLT winds (MSEE) and 3 years (1999, 2004 and 2006) show small MLT winds (missing-MSEEs). These unexpected small winds occur in years with global circulation anomalies associated with strong sudden stratospheric warmings and an early spring transition of zonal winds. With the proposed three MSEE classes we take into account local and global forcing factors.
    Journal of Geophysical Research: Atmospheres. 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Meteor smoke particles (MSP), which are thought to be the nucleation germs for mesospheric ice are currently discussed to consist of highly absorbing materials such as magnesiowüstite, hematite or magnesium-iron-silicates and may therefore be warmer than the ambient atmosphere. In order to quantify the temperature difference between MSPs and the atmosphere we developed a model to calculate the MSP equilibrium temperature in radiational and collisonal balance. The temperature difference between MSP and the surrounding atmosphere strongly depends on the composition of the MSP, especially on the relative iron content, where a higher iron content leads to warmer MSP. We then derive an expression of the nucleation rate of mesospheric ice particles which explicitly accounts for this temperature difference. We find that the nucleation rate is strongly reduced by several orders of magnitude if the germ temperature is increased by only a few Kelvin. Implementing this nucleation rate depending on the germ temperature into CARMA, the Community Aerosol and Radiation Model for Atmospheres, we find that fewer but larger ice particles are formed compared to a reference scenario with no temperature difference between MSP and ambient atmosphere. This may indicate that iron-rich MSP are not ideal ice nuclei and that either other MSP-types or other nucleation pathways (e.g. wave induced heterogeneous nucleation or even homogeneous nucleation) are responsible for ice formation at the mesopause.
    Journal of Atmospheric and Solar-Terrestrial Physics 01/2014; · 1.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Northern Hemispheric winter is disturbed by large scale variability mainly caused by Planetary Waves (PWs), which interact with the mean flow and thus result in Sudden Stratospheric Warmings (SSWs). The effects of a SSW on the middle atmosphere are an increase of stratospheric and a simultaneous decrease of mesospheric temperature as well as a wind reversal to westward wind from the mesosphere to the stratosphere. In most cases these disturbances are strongest at polar latitudes, get weaker toward the south and vanish at mid-latitudes around 50� to 60� N as for example during the winter 2005/06. However, other events like in 2009, 2010 and 2012 show a similar or even stronger westward wind at mid- than at polar latitudes either in the mesosphere or in the stratosphere during the SSW. This study uses local meteor and MF-radar measurements, global satellite observations from the Microwave Limb Sounder (MLS) and assimilated model data from MERRA (Modern- ERA Retrospective analysis for research and Applications). We compare differences in the latitudinal structure of the zonal wind, temperature and PW activity between a “normal” event, where the event in 2006 was chosen representatively, and the latitudinal displaced events in 2009, 2010 and 2012. A continuous westward wind band between the pole and 20� N is observed during the displaced events. Furthermore, distinctive temperature differences at mid-latitudes occur before the displaced warmings compared to 2006 as well as a southward extended stratospheric warming afterwards. These differences between the normal SSW in 2006 and the displaced events in 2009, 2010 and 2012 are linked to an increased PWactivity between 30� N and 50� N and the changed stationary wave flux in the stratosphere around the displaced events compared to 2006.
    Annales Geophysicae 08/2013; 31:1397--1415. · 1.52 Impact Factor
  • 21st ESA Symposium European Rocket & Balloon Programmes and Related Research, Thun; 06/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: From 19 November to 19 December 2010 the fourth and final ECOMA rocket campaign was conducted at Andøya Rocket Range (69° N, 16° E) in northern Norway. We present and discuss measurement results obtained during the last rocket launch labelled ECOMA09 when simultaneous and true common volume in situ measurements of temperature and turbulence supported by ground-based lidar observations reveal two Mesospheric Inversion Layers (MIL) at heights between 71 and 73 km and between 86 and 89 km. Strong turbulence was measured in the region of the upper inversion layer, with the turbulent energy dissipation rates maximising at 2 W kg-1. This upper MIL was observed by the ALOMAR Weber Na lidar over the period of several hours. The spatial extension of this MIL as observed by the MLS instrument onboard AURA satellite was found to be more than two thousand kilometres. Our analysis suggests that both observed MILs could possibly have been produced by neutral air turbulence.
    Annales Geophysicae 05/2013; 31(5):775-785. · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, first three-dimensionally resolved observations of polar mesospheric winter echeos (PMWEs) by a multi-beam experiment of the Middle Atmosphere Alomar Radar system (MAARSY) were published by Rapp et al. (2011). The observed PMWE at about 75 km altitude was tilted in the main flow direction (west to east). The origin of the PMWE was explained by two disparate concepts of gravity wave dynamics. On the one hand, the tilted PMWE was assumed to be aligned with the phase line of a linear gravity wave (?z ? 23 km, ?x ? 460 km) propagating at an intrinsic phase speed of - 73 m/s against the westerly wind. On the other hand, turbulence generated by breaking gravity waves was a necessary element to explain the existence of backscattering fluctuations. In addition to a thorough analysis of the synoptic meteorological conditions, high-resolution numerical simulations are performed with the all-scale geophysical flow solver EULAG (Prusa et al., 2008). The anelastic and pseudo-incompressible approximated equations are solved in a 3D computational domain covers a 1500 km long slice of Scandinavia and spans from the surface to 100 km altitude. Multiple numerical experiments are performed to explore the origin of the observed PMWE. Various hypotheses are tested. The presentation will discuss if the PMWEs were the result of breaking mountain waves excited by the flow over Scandinavia or if dynamical instabilities occuring in the highly sheared mesospheric flow led to the observed turbulence. Rapp, M., R. Latteck, G. Stober, et al., 2011: First three-dimensional observations of polar mesosphere winter echoes: Resolving space-time ambiguity. J. Geophys. Res., 116, A11307, doi:10.1029/2011JA016858. Prusa, J.M., P.K. Smolarkiewicz, A.A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows, Comput. Fluids 37, 1193-1207.
    04/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ECOMA (Existence of Charge state Of meteoric smoke particles in the Middle Atmosphere) sounding rocket campaign was conducted during the Geminid meteor shower in December 2010 in order to explore whether there is a change of the properties of meteoric smoke particles due to the stream. In parallel to the rocket flights, three radars monitored the Geminid activity located at the launch site in Northern Norway and in Northern Germany to gain information about the meteor flux into the atmosphere. The results presented here are based on specular meteor radar observations measuring the radiant position, the velocity and the meteor flux into the atmosphere during the Geminids. Further, the MAARSY (Middle Atmosphere Alomar Radar System) radar was operated to conduct meteor head echo experiments. The interferometric capabilities of MAARSY permit measuring the meteor trajectories within the radar beam and to determine the source radiant and geocentric meteor velocity, as well as to compute the meteor orbit.
    Annales Geophysicae 03/2013; 31(3):473-487. · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three sounding rockets were launched from Andøya Rocket Range in the ECOMA campaign in December 2010. The aim was to study the evolution of meteoric smoke particles during a major meteor shower. Of the various instruments onboard the rocket payload, this paper presents the data from a multi-Needle Langmuir Probe (m-NLP) and a charged dust detector. The payload floating potential, as observed using the m-NLP instrument, shows charging events on two of the three flights. These charging events cannot be explained using a simple charging model, and have implications towards the use of fixed bias Langmuir probes on sounding rockets investigating mesospheric altitudes. We show that for a reliable use of a single fixed bias Langmuir probe as a high spatial resolution relative density measurement, each payload should also carry an additional instrument to measure payload floating potential, and an instrument that is immune to spacecraft charging and measures absolute plasma density.
    Annales Geophysicae 02/2013; 31(2):187-196. · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Linear gravity wave (GW) theory is tested on the basis of simultaneous measurements of horizontal winds from a medium frequency (MF) radar at Juliusruh (54.6°N, 13.4°E) and temperatures from combined Potassium (K) and Rayleigh-Mie-Raman (RMR) lidars at Kühlungsborn (54.1°N, 11.8°E). The applicability of linear GW theory to mesospheric observations is far from obvious given the fact that typically a whole spectrum of waves is observed which may interact non-linearly. Before analyzing our experimental dataset for its fit to expectations from linear GW theory, the chosen methodology is tested with model data from the Kühlungsborn Mechanistic general Circulation Model (KMCM). This model is a mechanistic general circulation model with high spatial resolution such that waves with horizontal wavelengths in excess of ˜350km are explicitly resolved yielding a semi-realistic wave motion field. This may be considered as a suitable test-bed for defining and optimizing wave analysis approaches. This effort reveals that Stokes parameters analysis of filtered time series of GW-induced wind and temperature fluctuations in comparison to wave amplitudes directly retrieved from the filtered time series allows us to demonstrate the validity of polarization relations based on linear wave theory. Indeed, applying the same methodology to the observations yields similarly conclusive results thus giving evidence for the applicability of linear wave theory to mesospheric observations after appropriate filtering. These investigations are complemented by a comparison of kinetic and potential energy per unit mass for model and measured data. This reveals that the ratio of kinetic and potential energy also roughly follows expectations from linear wave theory.
    Journal of Atmospheric and Solar-Terrestrial Physics 02/2013; · 1.42 Impact Factor
  • Source
    I. Strelnikova, M. Rapp
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present paper ~ 32.5 h of EISCAT VHF PMWE observations were analyzed with focus on spectral properties like spectral width, doppler shift and spectral shape. Examples from two days of observations with weak and strong polar mesosphere winter echo (PMWE) signals are presented and discussed in detail. These examples reveal a large variability from one case to the other. That is, some features like an observed change of vertical wind direction and spectral broadening can be very prominent in one case, but unnoticeable in the other case. However, for all observations a change of spectral shape inside the layer relative to the incoherent background is noticed.
    Annales Geophysicae 02/2013; 31(2):359-375. · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This work investigates the influence of meteoric smoke particles (MSP) on the charge balance in the D-region ionosphere. Both experimental in situ measurements and a one-dimensional ionospheric model reveal a clear impact of MSP on the ionospheric composition of the D-region. The study reviews rocket-borne in situ measurements of electron and positive ion density, which show a distinct deficit of electrons in comparison to positive ions between 80 and 95 km. This deficit can be explained by the ambient negatively chargedMSP measured simultaneously with a Faraday cup. The influence of MSP on the D-region charge balance is addressed with a simplified ionospheric model with only six components, i.e. electrons, positive and negative ions and neutral and charged MSP (both signs). The scheme includes reactions of plasma captured by MSP and MSP photo reactions as well as the standard ionospheric processes, e.g. ionion recombination. The model shows that the capture of plasma constituents by MSP is an important process leading to scavenging of electrons. Since Faraday cup measurements are biased towards heavy MSP because of aerodynamical filtering, we have applied an estimate of this filter on the modelled MSP densities. By doing that, we find good qualitative agreement between the experimental data and our model results. In addition, the model study reveals an increase of positive ions in the presence of MSP. That is primarily caused by the reduced dissociative recombination with electrons which have been removed from the gas phase by the MSP.
    Annales Geophysicae 01/2013; 31(2013):2049-2062. · 1.52 Impact Factor
  • Source
    U.-P. Hoppe, Markus Rapp
    [Show abstract] [Hide abstract]
    ABSTRACT: With this special issue we document our current understanding of the impact of a major meteor shower on the structure, composition and dynamics of the middle atmosphere and lower ionosphere. The results centre on, but are not limited to, a recent international campaign with sounding rockets, ground-based and satellite observations: the ECOMA 2010 Geminids campaign. This campaign was conducted in December 2010 from Andoya Rocket Range (69� N, 16� E). Three instrumented payloads were launched to investigate the evolution of meteoric smoke particles’ distribution, properties and abundance as well as their effects on the middle atmosphere: one shortly before the onset of the shower, one at the peak of shower activity on 13 December, and one after shower activity had ceased. All scientific payloads included instruments to probe the neutral atmosphere (density, temperature, turbulence, trace species like meteor smoke, NO, O) and the lower ionosphere (electrons, positive ions, charged aerosols).
    Annales Geophysicae 01/2013; 31(2013):1829-1831. · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The influence of gravity waves on noctilucent clouds (NLC) at ALOMAR (69 N) is analysed by relating gravity wave activity to NLC occurrence from commonvolume measurements. Gravity wave kinetic energies are derived from MF-radar wind data and filtered into different period ranges by wavelet transformation. From the dataset covering the years 1999–2011, a direct correlation between gravity wave kinetic energy and NLC occurrence is not found, i.e., NLC appear independently of the simultaneously measured gravity wave kinetic energy. In addition, gravity wave activity is divided into weak and strong activity as compared to a 13 yr mean. The NLC occurrence rates during strong and weak activity are calculated separately for a given wave period and compared to each other. Again, for the full dataset no dependence of NLC occurrence on relative gravity wave activity is found. However, concentrating on 12 h of NLC detections during 2008, we do find an NLC-amplification with strong long-period gravity wave occurrence. Our analysis hence confirms previous findings that in general NLC at ALOMAR are not predominantly driven by gravity waves while exceptions to this rule are at least possible.
    ATMOSPHERIC CHEMISTRY AND PHYSICS 01/2013; · 5.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ECOMA (Existence and Charge state Of Meteoric dust grains in the middle Atmosphere) series of sounding rocket flights consisted of nine flights with almost identical payload design and flight characteristics. All flights carried a radio wave propagation experiment together with a variety of plasma probes. Three of these measured electron densities, two ion densities. The rockets were all launched from the Andøya Rocket Range, Norway, in four campaigns between 2006 and 2010. Emphasis is on the final three flights from 2010 where the payloads were equipped with four instruments capable of measuring plasma densities in situ, among them a novel probe flown for the first time in conjunction with a wave propagation experiment. Deviation factors of all probe data relative to the wave propagation results were derived and revealed that none of the probe data were close to the wave propagation results at all heights, but - more importantly - the instruments showed very different behaviour at different altitudes. The novel multi-needle Langmuir probe exhibits the best correlation to the wave propagation data, as there is minimal influence of the payload potential, but it is still subject to aerodynamics, especially at its location at the rear of the payload. For all other probe types, the deviation factor comes closer to unity with increasing plasma density. No systematic difference of the empirical deviation factor between day and night can be found. The large negative payload potential in the last three flights may be the cause for discrepancies between electron and ion probe data below 85 km.
    Annales Geophysicae 01/2013; 31(1):135-144. · 1.52 Impact Factor
  • Source
    G. Stober, S. Sommer, Markus Rapp, R. Latteck
    [Show abstract] [Hide abstract]
    ABSTRACT: The Middle Atmosphere Alomar Radar System (MAARSY) on the island of Andøya in Northern Norway (69.3� N, 16.0� E) observes polar mesospheric summer echoes (PMSE). These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first-order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g., horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.
    Atmospheric Measurement Techniques 01/2013; 6(2013):2893-2905. · 3.21 Impact Factor
  • Qiang Li, Markus Rapp
    [Show abstract] [Hide abstract]
    ABSTRACT: It is now well understood that the occurrence of PMSE is closely connected to the presence of ice particles. These ice particles modify the ambient electron density by electron attachment which occasionally leads to large electron density depletions which have also been called ‘biteouts’. There has been some debate in the literature regarding the relative depth of such depletions which is usually expressed by the parameter Λ=|ZA|NA/neΛ=|ZA|NA/ne. Here, |ZA|NA|ZA|NA is the charge number density of ice particles and ne is the electron density. In this paper, we present, for the first time, the statistical distribution of ΛΛ using measurements with the EISCAT VHF- and UHF-radars. Based on 25 h of simultaneous observations, we derived a total of 757 ΛΛ values based on 15 min of data each. In each of these cases, PMSE were observed with the EISCAT VHF-radar but not with the UHF-radar and the UHF-measurement were hence used to determine the electron density profile. From these 757 cases, there are 699 cases with Λ⪡1Λ⪡1, and only 33 cases with Λ>0.5Λ>0.5 (21 cases with Λ>1Λ>1). A correlation analysis of ΛΛ versus PMSE volume reflectivities further reveals that there is no strong dependence between the two parameters. This is in accordance with current PMSE-theory based on turbulence in combination with a large Schmidt-number. The maxima of ΛΛ from each profile show a negative relationship with the undisturbed electron densities deduced at the same altitudes. This reveals that the variability of ΛΛ mainly depends on the variability of the electron densities. In addition, variations of aerosol number densities may also play a role. Although part of the observations were conducted during the HF heating experiments, the so-called overshoot effects did not significantly bias our statistical results. In order to avoid missing biteouts because of a superposition of coherent and incoherent scatter in the UHF-data, we finally calculated spectral parameters n by applying a simple fit to auto-correlation functions as introduced by Strelnikova and Rapp (2010). Corresponding statistical results of the parameter n indicate that charged ice particles do exist in the vicinity of PMSE (i.e., n<1n<1) but they did not efficiently modify ambient electron densities so that clear ‘biteouts’ are observed.
    Journal of Atmospheric and Solar-Terrestrial Physics 01/2013; · 1.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ECOMA sounding rocket campaign in 2010 was performed to investigate the charge state and number density of meteoric smoke particles during the Geminids meteor shower in December 2010. The ALOMAR Na lidar contributed to the campaign with measurements of sodium number density, temperature and line-of-sight wind between 80 and 110 km altitude over Andøya in northern Norway. This paper investigates a possible connection between the Geminids meteor shower and the mesospheric sodium layer. We compare with data from a meteor radar and from a rocket-borne in situ particle instrument on three days. Our main result is that the sodium column density is smaller during the Geminids meteor shower than the winter average at the same latitude. Moreover, during two of the three years considered, the sodium column density decreased steadily during these three weeks of the year. Both the observed decrease of Na column density by 30% and of meteoric smoke particle column density correlate well with a corresponding decrease of sporadic meteor echoes. We found no correlation between Geminids meteor flux rates and sodium column density, nor between sporadic meteors and Na column density (R = 0.25). In general, we found the Na column density to be at very low values for winter, between 1.8 and 2.6 × 1013 m-2. We detected two meteor trails containing sodium, on 13 December 2010 at 87.1 km and on 19 December 2010 at 84 km. From these meteor trails, we estimate a global meteoric Na flux of 121 kg d-1 and a global total meteoric influx of 20.2 t d-1.
    Annales Geophysicae 01/2013; 31(1):61-73. · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During winter the wind field in the mesosphere/lower thermosphere (MLT) at middle and polar latitudes is characterized by a strong variability due to enhanced planetary wave activity and related stratospheric sudden warming (SSW) events. Such events are considered as distinct vertical coupling processes influencing the atmosphere below and above the stratosphere. In the last 12 years, an enhanced number of SSW, compared to the period from 1989 to 1998, has been observed in the northern hemisphere. Every SSW is connected with different effects in the MLT (strength and temporal development of wind reversals, temperature changes, wave activity, longitudinal dependence). To characterize the average behavior of the mesospheric response to strong SSWs, we combine high-resolution wind measurements from MF- and meteor radar at Andenes (69°N, 16°E) with global temperature observations from MLS aboard the Aura satellite for SSW events with a return to the middle atmosphere normal winter condition afterwards. Our aim is to identify characteristic wave patterns which are common to the majority of these events and to define the average characteristics of the SSW-related wave activity in the MLT. These will be compared to the relatively quiet winter 2011 with only a short minor warming without a wind reversal and to the wave activity in 2009 and 2010. The results show clear signatures of enhanced mesospheric planetary wave activity before and during the SSW and an earlier onset of the short term wind reversal in the mesosphere compared to wind and temperature changes in the stratosphere. The strong eastward winds at altitudes below 80 km after SSW are connected with an enhanced gravity wave activity caused by changed filter conditions. This provides evidence for a strong modulation of semidiurnal tidal amplitudes before and during SSW by planetary waves. However, no clear relation has been found in the temporal development of tides relative to the onset of the selected SSW events.
    Journal of Atmospheric and Solar-Terrestrial Physics 12/2012; s 90–91:86–96. · 1.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present in situ observations of meteoric smoke particles (MSP) obtained during three sounding rocket flights in December 2010 in the frame of the final campaign of the Norwegian-German ECOMA project (ECOMA = Existence and Charge state Of meteoric smoke particles in the Middle Atmosphere). The flights were conducted before, at the maximum activity, and after the decline of the Geminids which is one of the major meteor showers over the year. Measurements with the ECOMA particle detector yield both profiles of naturally charged particles (Faraday cup measurement) as well as profiles of photoelectrons emitted by the MSPs due to their irradiation by photons of a xenon-flash lamp. The column density of negatively charged MSPs decreased steadily from flight to flight which is in agreement with a corresponding decrease of the sporadic meteor flux recorded during the same period. This implies that the sporadic meteors are a major source of MSPs while the additional influx due to the shower meteors apparently did not play any significant role. Surprisingly, the profiles of photoelectrons are only partly compatible with this observation: while the photoelectron current profiles obtained during the first and third flight of the campaign showed a qualitatively similar behaviour as the MSP charge density data, the profile from the second flight (i.e., at the peak of the Geminids) shows much smaller photoelectron currents. This may tentatively be interpreted as a different MSP composition (and, hence, different photoelectric properties) during this second flight, but at this stage we are not in a position to conclude that there is a cause and effect relation between the Geminids and this observation. Finally, the ECOMA particle detector used during the first and third flight employed three instead of only one xenon flash lamp where each of the three lamps used for one flight had a different window material resulting in different cut off wavelengths for these three lamp types. Taking into account these data along with simple model estimates as well as rigorous quantum chemical calculations, it is argued that constraints on MSP sizes, work function and composition can be inferred. Comparing the measured data to a simple model of the photoelectron currents, we tentatively conclude that we observed MSPs in the 0.5-3 nm size range with generally increasing particle size with decreasing altitude. Notably, this size information can be obtained because different MSP particle sizes are expected to result in different work functions which is both supported by simple classical arguments as well as quantum chemical calculations. Based on this, the MSP work function can be estimated to lie in the range from ~4-4.6 eV. Finally, electronic structure calculations indicate that the low work function of the MSP measured by ECOMA indicates that Fe and Mg hydroxide clusters, rather than metal silicates, are the major constituents of the smoke particles.
    Annales Geophysicae 12/2012; 30(12):1661-1673. · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This brief note describes the first measurement of the microphysical properties and variability of meteoric smoke particles (MSPs) at high latitude using the Poker Flat ISR (65.1°N, 147.5°W). We present a novel technique for determining height resolved daytime D region neutral temperatures, which takes into account the presence of charged dust. We discuss the temporal/spatial variability and the relation to meteoric input observed and MSP microphysical properties in the polar mesopause region. The derived nanometer sized MSPs are consistent with size profiles derived previously using radar/rocket techniques and we note that our results imply a lack of heavy cluster ions below 85 km during the observing period. This provides a template for potential use at many other radar sites for the determination of microphysical properties of MSPs and day-time neutral temperature in the D region that show good general agreement with model and satellite temperature data during the observing period.
    Geophysical Research Letters 11/2012; · 3.98 Impact Factor

Publication Stats

2k Citations
237.15 Total Impact Points

Institutions

  • 1029–2013
    • Leibniz-Institute of Atmospheric Physics
      • Radar Sounding and Sounding Rockets
      Rostock, Mecklenburg-Vorpommern, Germany
  • 2009–2011
    • University of Rostock
      Rostock, Mecklenburg-Vorpommern, Germany
  • 2005–2007
    • Stockholm University
      • Department of Meteorology (MISU)
      Stockholm, Stockholm, Sweden
  • 2003
    • Forsvarets forskningsinstitutt
      Horten, Vestfold county, Norway
  • 2001
    • George Mason University
      Fairfax, Virginia, United States
  • 1998–1999
    • University of Bonn
      • Physics Institute
      Bonn, North Rhine-Westphalia, Germany