Wim Martinet

University of Antwerp, Antwerpen, Flanders, Belgium

Are you Wim Martinet?

Claim your profile

Publications (126)608.12 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: There is a need for animal models of plaque rupture. We previously reported that elastin fragmentation, due to a mutation (C1039G(+/-)) in the fibrillin-1 (Fbn1) gene, promotes atherogenesis and a highly unstable plaque phenotype in apolipoprotein E deficient (ApoE(-/-)) mice on a Western-type diet (WD). Here, we investigated whether plaque rupture occurred in ApoE(-/-)Fbn1(C1039G+/-) mice and was associated with myocardial infarction, stroke, and sudden death. Female ApoE(-/-)Fbn1(C1039G+/-) and ApoE(-/-) mice were fed a WD for up to 35 weeks. Compared to ApoE(-/-) mice, plaques of ApoE(-/-)Fbn1(C1039G+/-) mice showed a threefold increase in necrotic core size, augmented T-cell infiltration, a decreased collagen I content (70 ± 10%), extensive neovascularization, intraplaque haemorrhage, and a significant increase in matrix metalloproteinase-2, -9, -12, and -13 expression or activity. Plaque rupture was observed in 70% of ascending aortas and in 50% of brachiocephalic arteries of ApoE(-/-)Fbn1(C1039G+/-) mice. In ApoE(-/-) mice, plaque rupture was not seen in ascending aortas and only in 10% of brachiocephalic arteries. Seventy percent of ApoE(-/-)Fbn1(C1039G+/-) mice died suddenly, whereas all ApoE(-/-) mice survived. ApoE(-/-)Fbn1(C1039G+/-) mice showed coronary plaques and myocardial infarction (75% of mice). Furthermore, they displayed head tilt, disorientation, and motor disturbances (66% of cases), disturbed cerebral blood flow (73% of cases; MR angiograms) and brain hypoxia (64% of cases), indicative of stroke. Elastin fragmentation plays a key role in plaque destabilization and rupture. ApoE(-/-)Fbn1(C1039G+/-) mice represent a unique model of acute plaque rupture with human-like complications.
    European Heart Journal 02/2014; · 14.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Statins are currently able to stabilize atherosclerotic plaques by lowering plasma cholesterol and pleiotropic effects, but a residual risk for atherosclerotic disease remains. Therefore, effective prevention of atherosclerosis and treatment of its complications is still a major clinical challenge. A large body of evidence indicates that mammalian target of rapamycin (mTOR) inhibitors such as rapamycin or everolimus have pleiotropic anti-atherosclerotic effects so that these drugs can be used as add-on therapy to prevent or delay the pathogenesis of atherosclerosis. Moreover, bioresorbable scaffolds eluting everolimus trigger a healing process in the vessel wall, both in pigs and humans, that results in late lumen enlargement and plaque regression. At present, this phenomenon of atheroregression is poorly understood. However, given that mTOR inhibitors suppress cell proliferation and trigger autophagy, a cellular survival pathway and a process linked to cholesterol efflux, we hypothesize that these compounds can inhibit (or reverse) the basic mechanisms that control plaque growth and destabilization. Unfortunately, adverse effects associated with mTOR inhibitors such as dyslipidemia and hyperglycemia have recently been identified. Dyslipidemia is manageable via statin treatment, while the anti-diabetic drug metformin would prevent hyperglycemia. Because metformin has beneficial macrovascular effects, this drug in combination with an mTOR inhibitor might have significant promise to treat patients with unstable plaques. Moreover, both statins and metformin are known to inhibit mTOR via AMPK activation so that they would fully exploit the beneficial effects of mTOR inhibition in atherosclerosis.
    Atherosclerosis 01/2014; 233(2):601–607. · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: L-type calcium channel blockers (LCCBs) reduce blood pressure more effectively in hypertensive than in normotensive subjects and are more effective in vascular smooth muscle (VSM) than in cardiac muscle. This has been explained by the depolarized resting potential of VSM in comparison with heart muscle cells and during hypertension, because both favor the “high affinity” inactivated state of the L-type calcium channel (LCC). Depolarized resting potentials, however, also increase Ca2+ influx via window, non-inactivating LCC. The present study investigated whether these channels can be effectively blocked by nifedipine, verapamil or diltiazem, as representatives of different LCCB classes. C57Bl6 mouse aortic segments were depolarized by 50 mM K+ to attain similar degree of inactivation. The depolarization evoked biphasic contractions with the slow force component displaying higher sensitivity to LCCBs than the fast component. Removal of the fast force component increased, whereas stimulation of Ca2+ influx with the dihydropyridine BAY K8644, a structural analog of nifedipine, decreased the efficacy of the LCCBs. Addition of LCCBs during the contraction caused concentration-dependent relaxation, which was independent of the presence of a fast force component, but still showed lower sensitivity in the presence of BAY K8644. Our data suggest that steady-state contractions by depolarization with 50 mM K+ are completely due to window Ca2+ influx, which is preferentially inhibited by LCCBs. Furthermore, results point to interactions between the LCCB receptors and Ca2+ ions or BAY K8644. The high affinity for open, non-inactivating LCC may play a dominant role in the anti-hypertensive effects of LCCBs.
    European Journal of Pharmacology. 01/2014; 738:170–178.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a well-conserved lysosomal degradation pathway that plays a major role in both oncogenesis and tumor progression. Transmission electron microscopy (TEM) as well as immunohistochemistry are indispensable tools for the evaluation of autophagy in situ. Here, we describe an optimized protocol for the study of autophagic vacuoles by TEM and elaborate on the immunohistochemical detection of microtubule-associated protein 1 light chain (MAP1LC3, best known as LC3), which is currently considered as one of the most reliable markers of the autophagic process. The advantages, potential pitfalls, and limitations of these methods, as well as their value in the field of autophagy and oncometabolism research are discussed. Overall, we recommend a combined use of different techniques including TEM, immunohistochemistry, and molecular approaches (such as immunoblotting) for the unambiguous detection of autophagy in malignant as well as in normal tissues.
    Methods in enzymology. 01/2014; 543:89-114.
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite recent scientific and technological advances, cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Autophagy, an evolutionarily ancient response to cellular stress, has been implicated in the pathogenesis of a wide range of heart pathologies. However, the precise role of autophagy in these contexts remains obscure owing to its multifarious actions. Here, we review recently derived insights regarding the role of autophagy in multiple manifestations of cardiac plasticity and disease.
    Autophagy 08/2013; 9(10). · 12.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerosis is a chronic inflammatory disease of large and middle-sized blood vessels, and the leading cause of death among adults in the Western world. Recent evidence suggests that several molecular and cellular mechanisms play an important role in atherosclerosis and plaque progression. One of these mechanisms includes autophagy, a subcellular process for elimination of damaged organelles and protein aggregates via lysosomes. According to in vitro observations, the autophagic machinery is stimulated by several stress-related stimuli inside plaques, such as oxidized lipids, endoplasmic reticulum stress, hypoxia, nutrient deprivation, and inflammation. Although its role in atherosclerosis has not yet been fully established, a growing body of evidence indicates that autophagy has a protective function in atherosclerosis. It stimulates cholesterol efflux and reduces foam cell formation. Moreover, it prevents apoptosis by removing oxidatively damaged hyperpolarized mitochondria before reactive oxygen species production and cytochrome c release. Another important recent finding is that macrophage autophagy plays an essential role in delaying lesion progression by suppressing inflammasome activation. Interestingly, excessive everolimus-induced autophagy leads to selective macrophage death, and is a promising plaque-stabilizing strategy. Overall, autophagy seems to be a major player in atherosclerosis, but further research has to be performed to fully clarify its role in this disease.
    07/2013: pages 79-90; , ISBN: 978-0-12-405530-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerosis is a chronic inflammatory disorder of the arterial wall leading to coronary artery disease, stroke, and peripheral arterial disease. Along with the discovery of dipeptidyl peptidase 4 (DPP4) as a therapeutic target in type 2 diabetes, a role for DPP4 in atherosclerosis is emerging. However, until now the expression and role of other DPPs such as DPP8 and DPP9 in atherosclerosis is completely unknown. In the present study, we first investigated DPP expression in human atherosclerotic plaques. DPP4 could only be observed in endothelial cells of plaque neovessels in half of the specimens. In contrast, DPP8 and DPP9 were abundantly present in macrophage-rich regions of plaques. We then focused on DPP expression and function in macrophage differentiation, activation and apoptosis. DPP8/9 was responsible for most of the DPP activity in macrophages. During monocyte to macrophage differentiation, DPP9 was upregulated both in pro-inflammatory M1 (3.7 ± 0.3-fold increase) and anti-inflammatory M2 macrophages (3.7 ± 0.4-fold increase) whereas DPP8 expression remained unchanged. Inhibition of DPP8/9 activity with compound 1G244 reduced activation of M1 macrophages (IL-6 88 ± 16 vs. 146 ± 19 pg/ml; TNFα 3.8 ± 1.0 vs. 6.6 ± 1.9 ng/ml in treated vs. untreated cells), but not of M2 macrophages. Likewise, DPP9 silencing reduced TNFα and IL-6 secretion, pointing to a DPP9-mediated effect of the inhibitor. DPP8/9 inhibition also enhanced macrophage apoptosis (15 ± 4 vs. 7 ± 3 % in untreated cells). Because pro-inflammatory macrophages play a key role in atherogenesis, plaque rupture and subsequent infarction, DPP9 inhibition might provide interesting therapeutic prospects in reducing atherosclerosis and/or in the prevention of plaque rupture.
    Archiv für Kreislaufforschung 05/2013; 108(3):350. · 7.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a reparative, life-sustaining process by which cytoplasmic components are sequestered in double membrane vesicles and degraded upon fusion with lysosomal compartments. Mice with a macrophage-specific deletion of the essential autophagy gene Atg5 develop plaques with increased apoptosis and oxidative stress as well as enhanced plaque necrosis. This finding indicates that basal autophagy in macrophages is anti-apoptotic and present in atherosclerotic plaques to protect macrophages against various atherogenic stressors. However, autophagy is impaired in advanced stages of atherosclerosis and its deficiency promotes atherosclerosis in part through activation of the inflammasome. Because basal autophagy can be intensified selectively in macrophages by specific drugs such as mammalian target of rapamycin (mTOR) inhibitors or Toll-like receptor 7 (TLR7) ligands, these drugs were recently tested as potential plaque stabilizing compounds. Stent-based delivery of the mTOR inhibitor everolimus promotes a stable plaque phenotype, whereas local administration of the TLR7 ligand imiquimod stimulates inflammation and plaque progression. Therefore, more drugs capable of inducing autophagy should be tested in plaque macrophages to evaluate the feasibility of this approach. Given that drug-induced macrophage autophagy is associated with pro-inflammatory responses due to cytokine release, induction of postautophagic necrosis or activation of phagocytes after clearance of the autophagic corpse, cotreatment with anti-inflammatory compounds may be required. Overall, this review highlights the pros and cons of macrophage autophagy as a drug target for plaque stabilization.
    Archiv für Kreislaufforschung 01/2013; 108(1):321. · 7.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the mouse aorta, contractions evoked by the α1-adrenoceptor agonist phenylephrine are strongly suppressed by the continuous production of nitric oxide (NO). We investigated whether phenylephrine itself stimulated NO production by activating endothelial α2-adrenoceptors. On a prostaglandin F2α contraction, the α2-adrenoceptor agonist 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK14304) induced 29.3±7.4% relaxation which was inhibited by 0.1 µM 2-[(4,5-Dihydro-1H-imidazol-2-yl)methyl]-2,3-dihydro-1-methyl-1H-isoindole (BRL44408) with a pKB' corresponding to α2-antagonism. In the presence of NO synthase blockers, UK14304 elicited small contractions above 1 µM which were inhibited by 0.1 µM prazosin, but not influenced by 0.1 µM rauwolscine. At 3 µM or higher concentrations, phenylephrine caused only modest relaxation (up to 7.4±2.3%) of segments constricted with prostaglandin F2α in the presence of prazosin, which was abolished with 0.1 µM BRL44408. Furthermore, BRL44408 did not increase contractions induced with 1 µM phenylephrine. These results confirm that α1- but not α2-adrenoceptors are expressed on aortic smooth muscle cells, while endothelial cells only express α2-adrenoceptors. Moreover, phenylephrine exerted a very modest relaxing effect through non-specific stimulation of α2-adrenoceptors, but only at concentrations higher than 1 µM. It is concluded that the high basal output of NO in the isolated mouse aorta is not due to stimulation of α-adrenoceptors.
    Journal of cardiovascular pharmacology 12/2012; · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transmission electron microscopy (TEM) is an indispensable standard method to monitor macroautophagy in tissue samples. Because TEM is time consuming and not suitable for daily routine, many groups try to identify macroautophagy in tissue by conventional immunohistochemistry. The aim of the present study was to evaluate whether immunohistochemical assessment of macroautophagy-related marker proteins such as LC3, ATG5, CTSD/cathepsin D, BECN1/Beclin 1 or SQSTM1/p62 is feasible and autophagy-specific. For this purpose, livers from starved mice were used as a model because hepatocytes are highly sensitive to autophagy induction. ATG7-deficient mouse livers served as negative control. Our findings indicate that unambiguous immunodetection of LC3 in paraffin-embedded tissue specimens was hampered due to low in situ levels of this protein. Maximum sensitivity could only be obtained using high-quality, isoform-specific antibodies, such as antibody 5F10, in combination with Envision+ signal amplification. Moreover, LC3 stains were optimal in neutral-buffered formalin-fixed tissue, immersed in citrate buffer during antigen retrieval. However, even when using this methodology, LC3 monitoring required overexpression of the protein, e.g., in GFP-LC3 transgenic mice. This was not only the case for the liver but also for other organs including heart, skeletal muscle, kidney and gut. Immunohistochemical detection of the autophagy-related proteins ATG5, CTSD or BECN1 is not recommendable for monitoring autophagy, due to lack of differential gene expression or doubtful specificity. SQSTM1 accumulated in autophagy-deficient liver, thus it is not a useful marker for tissue with autophagic activity. We conclude that TEM remains an indispensable technique for in situ evaluation of macroautophagy, particularly in clinical samples for which genetic manipulation or other in vitro techniques are not feasible.
    Autophagy 12/2012; 9(3). · 12.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages play a key role in the initiation and progression of atherosclerotic plaques. Although a significant number of macrophages undergoes cell death during plaque development as a result of atherogenic stressors, advanced plaques are characterized by a large macrophage content. Macrophage accumulation is mediated by continuous recruitment of monocytes, reduced emigration of macrophages and poor phagocytosis of dead cells which may trigger secondary necrosis and amplification of plaque inflammation. Moreover, an increasing body of evidence indicates that macrophages have developed several strategies to survive and to proliferate in the adverse environment of an advanced atherosclerotic plaque. Macrophages contain organic molecules or enzymes that provide enhanced antioxidant protection. In addition, synthesis of anti-apoptotic proteins is upregulated and several cellular protection mechanisms such as the unfolded protein response and autophagy are activated in macrophages to promote cellular survival. In this review, we discuss these macrophage survival mechanisms that allow growth and destabilization of advanced atherosclerotic plaques.
    Archiv für Kreislaufforschung 11/2012; 107(6):297. · 7.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bioavailability of nitric oxide (NO) is mostly studied in isolated blood vessels. We investigated changes in basal and receptor-stimulated endothelial NO synthase (eNOS) activity after isolation of wild-type and Marfan mouse aorta. Starting 1h after dissection, basal NO release was assessed at hourly intervals by its ability to suppress isometric contractions in aortic segments. Relaxation induced by acetylcholine or α(2)-adrenoceptor agonist 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK14304) was used to study stimulated NOS activity. One hour after dissection, phenylephrine- or prostaglandin F(2α)-induced force attained only 17±4% or 31±7% of maximum tension in the presence of N(Ω)-nitro-l-arginine-methylesther (l-NAME), and contractions increased to 63±6% and 82±11%, respectively at 5h. In contrast, acetylcholine or UK14304 relaxation curves changed minimally. l-NAME and eNOS-deficiency abolished basal NO production, unlike inhibitors of neuronal (N(Ω)-propyl-l-arginine) or inducible (1400W) NOS. Acetylcholine-induced relaxation was abolished by l-NAME, strongly suppressed by eNOS-deficiency and attenuated by N(Ω)-propyl-l-arginine. In a bioassay based on diethylamine NONOate concentration-response curves the suppression of contractile forces was interpolated into NO equivalents. This showed exponential decay of basal NO, which occurred three times faster in aortas from mice with Marfan syndrome, while acetylcholine-induced relaxation remained unaltered. Immunoblotting showed unchanged eNOS expression, or phosphorylation at Ser1177, Ser617 or Thr495 between 1h and 4h, but Akt phosphorylation declined gradually. The dramatic loss of basal NO release after tissue isolation shows that timing is crucial when studying NO responses. The preservation of receptor-induced relaxation implies differential regulation of basal and stimulated eNOS activity, and phosphoinositide-3-kinase/Akt signalling seems specifically associated with basal eNOS activity.
    European journal of pharmacology 09/2012; · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Electrophysiological studies of L-type Ca2+ channels in isolated vascular smooth muscle cells revealed that depolarization of these cells evoked a transient and a time-independent Ca2+ current. The sustained, non-inactivating current occurred at voltages where voltage-dependent activation and inactivation overlapped (voltage window) and its contribution to basal tone or active tension in larger multicellular blood vessel preparations is unknown at present. This study investigated whether window Ca2+ influx affects isometric contraction of multicellular C57Bl6 mouse aortic segments. RESULTS: Intracellular Ca2+ (Cai2+, Fura-2), membrane potential and isometric force were measured in aortic segments, which were clamped at fixed membrane potentials by increasing extracellular K+ concentrations. K+ above 20 mM evoked biphasic contractions, which were not affected by inhibition of IP3- or Ca2+ induced Ca2+ release with 2-aminoethoxydiphenyl borate or ryanodine, respectively, ruling out the contribution of intracellular Ca2+ release. The fast force component paralleled Cai2+ increase, but the slow contraction coincided with Cai2+ decrease. In the absence of extracellular Ca2+, basal tension and Cai2+ declined, and depolarization failed to evoke Cai2+ signals or contraction. Subsequent re-introduction of external Ca2+ elicited only slow contractions, which were now matched by Cai2+ increase. After Cai2+ attained steady-state, isometric force kept increasing due to Ca2+- sensitization of the contractile elements. The slow force responses displayed a bell-shaped voltage-dependence, were suppressed by hyperpolarization with levcromakalim, and enhanced by an agonist of L-type Ca2+ channels (BAY K8644). CONCLUSION: The isometric response of mouse aortic segments to depolarization consists of a fast, transient contraction paralleled by a transient Ca2+ influx via Ca2+ channels which completely inactivate. Ca2+ channels, which did not completely inactivate during the depolarization, initiated a second, sustained phase of contraction, which was matched by a sustained non-inactivating window Ca2+ influx. Together with sensitization, this window L-type Ca2+ influx is a major determinant of basal and active tension of mouse aortic smooth muscle.
    BMC Physiology 09/2012; 12(1):9.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle atrophy is defined as a decrease in muscle mass and it occurs when protein degradation exceeds protein synthesis. Potential triggers of muscle wasting are long-term immobilization, malnutrition, severe burns, aging as well as various serious and often chronic diseases, such as chronic heart failure, obstructive lung disease, renal failure, AIDS, sepsis, immune disorders, cancer, and dystrophies. Interestingly, a cooperation between several pathophysiological factors, including inappropriately adapted anabolic (e.g., growth hormone, insulin-like growth factor 1) and catabolic proteins (e.g., tumor necrosis factor alpha, myostatin), may tip the balance towards muscle-specific protein degradation through activation of the proteasomal and autophagic systems or the apoptotic pathway. Based on the current literature, we present an overview of the molecular and cellular mechanisms that contribute to muscle wasting. We also focus on the multifacetted therapeutic approach that is currently employed to prevent the development of muscle wasting and to counteract its progression. This approach includes adequate nutritional support, implementation of exercise training, and possible pharmacological compounds.
    Journal of cachexia, sarcopenia and muscle. 06/2012; 3(3):163-79.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerotic plaques tend to rupture as a consequence of a weakened fibrous cap, particularly in the shoulder regions where most macrophages reside. Macrophages express Toll-like receptors to recognize pathogens and eliminate intracellular pathogens by inducing autophagy. Because Toll-like receptor 7 (TLR7) is thought to be expressed in macrophages but not in smooth muscle cells (SMCs), we investigated whether induction of macrophage autophagic death by TLR7 ligand imiquimod can affect the composition of atherosclerotic plaques in favor of their stability. Immunohistochemical staining of human carotid plaques as well as Western blotting of cultured macrophages and SMCs confirmed that TLR7 was expressed in macrophages, but not in SMCs. In vitro experiments showed that only TLR7 expressing cells underwent imiquimod-induced cell death, which was characterized by autophagosome formation. Imiquimod-treated macrophages activated nuclear factor-κB (NF-κB) and released pro-inflammatory cytokines and chemokines. This effect was inhibited by the glucocorticoid dexamethasone. Imiquimod-induced cytokine release was significantly decreased in autophagy-deficient macrophages because these cells died by necrosis at an accelerated pace. Local in vivo administration of imiquimod to established atherosclerotic lesions in rabbit carotid arteries induced macrophage autophagy without induction of cell death, and triggered cytokine production, upregulation of vascular adhesion molecule-1, infiltration of T-lymphocytes, accumulation of macrophages and enlargement of plaque area. Treatment with dexamethasone suppressed these pro-inflammatory effects in vivo. SMCs and endothelial cells in imiquimod-treated plaques were not affected. In conclusion, imiquimod induces macrophage autophagy in atherosclerotic plaques, but stimulates plaque progression through cytokine release and enhanced infiltration of inflammatory cells.
    Archiv für Kreislaufforschung 05/2012; 107(3):269. · 7.35 Impact Factor
  • Source
    Autophagy 04/2012; 8(4):1-100. · 12.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process);5,6 thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Autophagy 04/2012; 8(4). · 12.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Autophagy 04/2012; 8(4):445-544. · 12.04 Impact Factor

Publication Stats

4k Citations
608.12 Total Impact Points

Institutions

  • 2001–2014
    • University of Antwerp
      • • Laboratory of Pathophysiology
      • • Faculteit Geneeskunde en Gezondheidswetenschappen
      Antwerpen, Flanders, Belgium
  • 2012
    • University of Michigan
      • Life Sciences Institute
      Ann Arbor, MI, United States
    • Università degli Studi di Brescia
      • Department of Clinical and Experimental Sciences
      Brescia, Lombardy, Italy