Elisabeth Georges-Labouesse

University of Strasbourg, Strasburg, Alsace, France

Are you Elisabeth Georges-Labouesse?

Claim your profile

Publications (45)299.76 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The α6 integrin subunit (α6) has been implicated in cancer cell migration and in the progression of several malignancies, but its role in tumor angiogenesis is unclear. In mice, anti-α6 blocking antibodies reduce tumor angiogenesis, whereas Tie1-dependent α6 gene deletion enhances neovessel formation in melanoma and lung carcinoma. To clarify the discrepancy in these results we used the cre-lox system to generate a mouse line, α6fl/fl‑Tie2Cre+, with α6 gene deletion specifically in Tie2-lineage cells: endothelial cells, pericytes, subsets of hematopoietic stem cells, and Tie2-expressing monocytes/macrophages (TEMs), known for their proangiogenic properties. Loss of α6 expression in α6fl/fl‑Tie2Cre+ mice reduced tumor growth in a murine B16F10 melanoma model. Immunohistological analysis of the tumors showed that Tie2-dependent α6 gene deletion was associated with reduced tumor vascularization and with reduced infiltration of proangiogenic Tie2-expressing macrophages. These findings demonstrate that α6 integrin subunit plays a major role in tumor angiogenesis and TEM infiltration. Targeting α6 could be used as a strategy to reduce tumor growth.
    International Journal of Oncology 09/2014; · 2.66 Impact Factor
  • Source
    Dataset: cvs153supp
  • [Show abstract] [Hide abstract]
    ABSTRACT: The canonical mitochondrial death pathway was first discovered for its role in signaling apoptosis. It has since been found to have a requisite function in differentiation initiation in many cell types including the lens through low-level activation of the caspase-3 protease. The ability of this pathway to function as a molecular switch in lens differentiation depends on the concurrent induction of survival molecules in the Bcl-2 and IAP families, induced downstream of an IGF-1R/NFκB coordinate survival signal, to regulate caspase-3 activity. Here we investigated whether α6 integrin signals upstream to this IGF-1R-mediated survival-linked differentiation signal. Our findings show that IGF-1R is recruited to and activated specifically in α6 integrin receptor signaling complexes in the lens equatorial region, where lens epithelial cells initiate their differentiation program. In studies with both α6 integrin knockout mice lenses and primary lens cell cultures following α6 integrin siRNA knockdown, we show that IGF-1R activation is dependent on α6 integrin and that this transactivation requires Src kinase activity. In addition, without α6 integrin, activation and expression of NFκB was diminished, and expression of Bcl-2 and IAP family members were downregulated, resulting in high-level caspase-3 activation. As a result, a number of hallmarks of lens differentiation failed to be induced; including nuclear translocation of Prox1 in the differentiation initiation zone and apoptosis was promoted. We conclude that α6 integrin is an essential upstream regulator of the IGF-1R survival pathway that regulates the activity level of caspase-3 for it to signal differentiation initiation of lens epithelial cells.
    Journal of Biological Chemistry 12/2013; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During development, Schwann cells extend lamellipodia-like processes to segregate large- and small-caliber axons during the process of radial sorting. Radial sorting is a prerequisite for myelination and is arrested in human neuropathies because of laminin deficiency. Experiments in mice using targeted mutagenesis have confirmed that laminins 211, 411, and receptors containing the β1 integrin subunit are required for radial sorting; however, which of the 11 α integrins that can pair with β1 forms the functional receptor is unknown. Here we conditionally deleted all the α subunits that form predominant laminin-binding β1 integrins in Schwann cells and show that only α6β1 and α7β1 integrins are required and that α7β1 compensates for the absence of α6β1 during development. The absence of either α7β1 or α6β1 integrin impairs the ability of Schwann cells to spread and to bind laminin 211 or 411, potentially explaining the failure to extend cytoplasmic processes around axons to sort them. However, double α6/α7 integrin mutants show only a subset of the abnormalities found in mutants lacking all β1 integrins, and a milder phenotype. Double-mutant Schwann cells can properly activate all the major signaling pathways associated with radial sorting and show normal Schwann cell proliferation and survival. Thus, α6β1 and α7β1 are the laminin-binding integrins required for axonal sorting, but other Schwann cell β1 integrins, possibly those that do not bind laminins, may also contribute to radial sorting during peripheral nerve development.
    Journal of Neuroscience 11/2013; 33(46):17995-8007. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a unique extracellular matrix (ECM) niche in the spleen, the marginal zone (MZ), characterized by the basement membrane glycoproteins, laminin α5 and agrin, that promotes formation of a specialized population of MZ B lymphocytes that respond rapidly to blood-borne antigens. Mice with reduced laminin α5 expression show reduced MZ B cells and increased numbers of newly formed (NF) transitional B cells that migrate from the bone marrow, without changes in other immune or stromal cell compartments. Transient integrin α6β1-mediated interaction of NF B cells with laminin α5 in the MZ supports the MZ B-cell population, their long-term survival, and antibody response. Data suggest that the unique 3D structure and biochemical composition of the ECM of lymphoid organs impacts on immune cell fate.
    Proceedings of the National Academy of Sciences 07/2013; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Laminins are major components of basement membranes, well located to interact with platelets upon vascular injury. Laminin-111 (α1β1γ1) is known to support platelet adhesion but is absent from most blood vessels, which contain isoforms with the α2, α4 or α5 chain. Whether vascular laminins support platelet adhesion and activation and the significance of these interactions in hemostasis and thrombosis remains unknown. Using an in vitro flow assay, we show that laminin-411 (α4β1γ1), laminin-511 (α5β1γ1) and laminin-521 (α5β2γ1), but not laminin-211 (α2β1γ1), allow efficient platelet adhesion and activation across a wide range of arterial wall shear rates. Adhesion was critically dependent on integrin α6β1 and the glycoprotein Ib-IX complex, which binds to plasmatic von Willebrand factor adsorbed on laminins. Glycoprotein VI did not participate in the adhesive process but mediated platelet activation induced by α5-containing laminins. To address the significance of platelet/laminin interactions in vivo, we developed a platelet-specific knock-out of integrin α6. Platelets from these mice failed to adhere to laminin-411, laminin-511 and laminin-521 but responded normally to a series of agonists. α6β1-deficient mice presented a marked decrease in arterial thrombosis in three models of injury of the carotid, aorta and mesenteric arterioles. The tail bleeding time and blood loss remained unaltered, indicating normal hemostasis. This study reveals an unsuspected important contribution of laminins to thrombus formation in vivo and suggests that targeting their main receptor, integrin α6β1, could represent an alternative antithrombotic strategy with a potentially low bleeding risk.
    Circulation 06/2013; · 15.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in genes encoding several basal lamina components as well as their cellular receptors disrupt normal deposition and remodeling of the cortical basement membrane resulting in a disorganized cerebral and cerebellar cortex. The α6 integrin was the first α subunit associated with cortical lamination defects and formation of neural ectopias. In order to understand the precise role of α6 integrin in the central nervous system (CNS), we have generated mutant mice carrying specific deletion of α6 integrin in neuronal and glia precursors by crossing α6 conditional knockout mice with Nestin-Cre line. Cerebral cortex development occurred properly in the resulting α6 (fl/fl;nestin-Cre) mutant animals. Interestingly, however, cerebellum displayed foliation pattern defects although granule cell (GC) proliferation and migration were not affected. Intriguingly, analysis of Bergmann glial (BG) scaffold revealed abnormalities in fibers morphology associated with reduced processes outgrowth and altered actin cytoskeleton. Overall, these data show that α6 integrin receptors are required in BG cells to provide a proper fissure formation during cerebellum morphogenesis.
    Cell adhesion & migration 05/2013; 7(3). · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adhesion between cells and the extracellular matrix is mediated by different types of transmembraneous proteins. Their associations to specific partners lead to the assembly of contacts such as focal adhesions and hemidesmosomes. The spatial overlap between both contacts within cells has however limited the study of each type of contact. Here we show that with "stampcils" focal contacts and hemidesmosomes can be spatially separated: cells are plated within the cavities of a stencil and the grids of the stencil serve as stamps for grafting an extracellular matrix protein-fibronectin. Cells engage new contacts on stamped zones leading to the segregation of adhesions and their associated cytoskeletons, i.e., actin and intermediate filaments of keratins. This new method should provide new insights into cell contacts compositions and dynamics.
    Cell adhesion & migration 10/2012; 6(6). · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Integrins α6β1 and α6β4 are receptors for laminins, the main components of the basement membrane underlying the endothelial cells. In vitro, α6 integrin subunit (α6) expression at the surface of endothelial cells and their progenitors (EPCs) is up-regulated by pro-angiogenic growth factors and is crucial for adhesion, migration, and pseudotube formation. We investigated the role for α6 in post-ischaemic vascular repair in vivo. We used the cre-lox system to generate a mouse line with specific α6 gene deletion in Tie2-lineage cells. In a model of hind-limb ischaemia, Tie2-dependent α6 deletion reduced neovessel formation and reperfusion of the ischaemic limb. Concerning the role for α6 in post-ischaemic vasculogenesis, we showed previously that α6 was required for EPC recruitment at the site of ischaemia. Here, we found that α6 deletion also reduced EPC mobilization from the bone marrow after ischaemia. Examination of the ischaemic muscles showed that Tie2-dependent α6 deletion decreased the recruitment of pro-angiogenic Tie2-expressing macrophages. In the Matrigel plug assay, fibroblast growth factor-2-induced vascularization was diminished in mice lacking endothelial α6. To specifically investigate the role for α6 in angiogenesis, aortic rings were embedded in Matrigel or collagen and cultured ex vivo. In Matrigel, neovessel outgrowth from rings lacking α6 was strongly diminished, whereas no genotype-dependent difference occurred for rings in collagen. α6 plays a major role in both post-ischaemic angiogenesis and vasculogenesis.
    Cardiovascular Research 04/2012; 95(1):39-47. · 5.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurons require precise targeting of their axons to form a connected network and a functional nervous system. Although many guidance receptors have been identified, much less is known about how these receptors signal to direct growth cone migration. We used Caenorhabditis elegans motoneurons to study growth cone directional migration in response to a repellent UNC-6 (netrin homolog) guidance cue. The evolutionarily conserved kinase MIG-15 [homolog of Nck-interacting kinase (NIK)] regulates motoneuron UNC-6-dependent repulsion through unknown mechanisms. Using genetics and live imaging techniques, we show that motoneuron commissural axon morphology defects in mig-15 mutants result from impaired growth cone motility and subsequent failure to migrate across longitudinal obstacles or retract extra processes. To identify new genes acting with mig-15, we screened for genetic enhancers of the mig-15 commissural phenotype and identified the ezrin/radixin/moesin ortholog ERM-1, the kinesin-1 motor UNC-116 and the actin regulator WVE-1 complex. Genetic analysis indicates that mig-15 and erm-1 act in the same genetic pathway to regulate growth cone migration and that this pathway functions in parallel to the UNC-116/WVE-1 pathway. Further, time-lapse imaging of growth cones in mutants suggests that UNC-116 might be required to stimulate protrusive activity at the leading edge, whereas MIG-15 and ERM-1 maintain low activity at the rear edge. Together, these results support a model in which the MIG-15 kinase and the UNC-116-WVE-1 complex act on opposite sides of the growth cone to promote robust directional migration.
    Development 10/2011; 138(20):4475-85. · 6.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hemidesmosomes (HDs) are essential anchorage junctions which mediate the firm attachment of epithelia to the underlying basement membranes, of which one main component is the integrin α6β4. These specific junctions are also able to trigger signalling pathways, via the recruitment and interactions of signalling molecules with HD components such as the cytoplasmic tail of the β4 integrin or the plakin plectin. HDs must also assemble and disassemble depending on the tissue context for example during tissue remodelling. Alterations of HD components or their loss result in skin blistering disorders known as epidermolysis bullosa. Since mice lacking integrin α6 die at birth with severe skin blistering, we have produced a mouse line in which epidermal deletion of integrin α6 can be controlled by tamoxifen injection. We observed that the deletion was mosaic, but that hairless skin such as ears, tails and paws were affected and showed chronic inflammation associated with hyperproliferation, and expression of laminin-111. Interestingly, two cytokines, amphiregulin and epiregulin, previously found increased in integrin α6 deficient cultured keratinocytes, were also increased here in the affected skin. In detached areas, we validate clearly that the absence of integrin α6 leads to a delocalisation of plectin, and the complete disappearance of HD structures.
    European journal of cell biology 10/2010; 90(2-3):270-7. · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During cerebral cortex development, post-mitotic neurons interact with radial glial fibers and the extracellular environment to migrate away from the ventricular region and form a correct laminar structure. Integrin receptors are major mediators of cell-cell and cell-extracellular matrix interactions. Several integrin heterodimers are present during formation of the cortical layers. The alpha5beta1 receptor is expressed in the neural progenitors of the ventricular zone during cerebral cortex formation. Using in utero electroporation to introduce short hairpin RNAs in the brain at embryonic day 15.5, we were able to inhibit acutely the expression of alpha5 integrin in the developing cortex. The knockdown of alpha5 integrin expression level in neural precursors resulted in an inhibition of radial migration, without perturbing the glial scaffold. Moreover, the same inhibitory effect on neuronal migration was observed after electroporation of a Cre recombinase expression plasmid into the neural progenitors of conditional knockout mice for alpha5 integrin. In both types of experiments, the electroporated cells expressing reduced levels of alpha5 integrin accumulated in the premigratory region with an abnormal morphology. At postnatal day 2, ectopic neurons were observed in cortical layer V, while a deficit of neurons was observed in cortical layer II-IV. We show that these neurons do not express a layer V-specific marker, suggesting that they have not undergone premature differentiation. Overall, these results indicate that alpha5beta1 integrin functions in the regulation of neural morphology and migration during cortical development, playing a role in cortical lamination.
    European Journal of Neuroscience 02/2010; 31(3):399-409. · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Laminins are expressed highly in blood vessel basement membranes and have been implicated in angiogenesis. alpha6beta1- and alpha6beta4-integrins are major receptors for laminins in endothelial cells, but the precise role of endothelial alpha6-integrin in tumour angiogenesis is not clear. We show that blood vessels in human invasive ductal carcinoma of the breast have decreased expression of the alpha6-integrin-subunit when compared with normal breast tissue. These data suggest that a decrease in alpha6-integrin-subunit expression in endothelial cells is associated with tumour angiogenesis. To test whether the loss of the endothelial alpha6-integrin subunit affects tumour growth and angiogenesis, we generated alpha6fl/fl-Tie1Cre+ mice and showed that endothelial deletion of alpha6-integrin is sufficient to enhance tumour size and tumour angiogenesis in both murine B16F0 melanoma and Lewis cell lung carcinoma. Mechanistically, endothelial alpha6-integrin deficiency elevated significantly VEGF-mediated angiogenesis both in vivo and ex vivo. In particular, alpha6-integrin-deficient endothelial cells displayed increased levels of VEGF-receptor 2 (VEGFR2) and VEGF-mediated downstream ERK1/2 activation. By developing the first endothelial-specific alpha6-knockout mice, we show that the expression of the alpha6-integrin subunit in endothelial cells acts as a negative regulator of angiogenesis both in vivo and ex vivo.
    The Journal of Pathology 10/2009; 220(3):370-81. · 7.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Specific inhibition of the entry of encephalitogenic T lymphocytes into the central nervous system in multiple sclerosis would provide a means of inhibiting disease without compromising innate immune responses. We show here that targeting lymphocyte interactions with endothelial basement membrane laminins provides such a possibility. In mouse experimental autoimmune encephalomyelitis, T lymphocyte extravasation correlates with sites expressing laminin alpha4 and small amounts of laminin alpha5. In mice lacking laminin alpha4, laminin alpha5 is ubiquitously expressed along the vascular tree, resulting in marked and selective reduction of T lymphocyte infiltration into the brain and reduced disease susceptibility and severity. Vessel phenotype and immune response were not affected in these mice. Rather, laminin alpha5 directly inhibited integrin alpha(6)beta(1)-mediated migration of T lymphocytes through laminin alpha4. The data indicate that T lymphocytes use mechanisms distinct from other immune cells to penetrate the endothelial basement membrane barrier, permitting specific targeting of this immune cell population.
    Nature medicine 05/2009; 15(5):519-27. · 27.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: integrin, homing, bone marrow, hematopoietic stem cell
    Cell Research 07/2008; · 10.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Homing of hematopoietic stem cells (HSCs) into the bone marrow (BM) is a prerequisite for establishment of hematopoiesis during development and following transplantation. However, the molecular interactions that control homing of HSCs, in particular, of fetal HSCs, are not well understood. Herein, we studied the role of the alpha6 and alpha4 integrin receptors for homing and engraftment of fetal liver (FL) HSCs and hematopoietic progenitor cells (HPCs) to adult BM by using integrin alpha6 gene-deleted mice and function-blocking antibodies. Both integrins were ubiquitously expressed in FL Lin(-)Sca-1(+)Kit(+) (LSK) cells. Deletion of integrin alpha6 receptor or inhibition by a function-blocking antibody inhibited FL LSK cell adhesion to its extracellular ligands, laminins-411 and -511 in vitro, and significantly reduced homing of HPCs to BM. In contrast, the anti-integrin alpha6 antibody did not inhibit BM homing of HSCs. In agreement with this, integrin alpha6 gene-deleted FL HSCs did not display any homing or engraftment defect compared with wild-type littermates. In contrast, inhibition of integrin alpha4 receptor by a function-blocking antibody virtually abrogated homing of both FL HSCs and HPCs to BM, indicating distinct functions for integrin alpha6 and alpha4 receptors during homing of fetal HSCs and HPCs.
    Blood 11/2007; 110(7):2399-407. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mice lacking the alpha6 integrin chain die at birth with severe skin blistering. To further study the function of alpha6 integrin in skin, we generated conditionally immortalized cell lines from the epidermis of wild-type and alpha6 deficient mouse embryos. Mutant cells presented a decreased adhesion on laminin 5, the major component of the basement membrane in the skin, and on laminins 10/11 and 2. A DNA array analysis revealed alterations in the expression of extracellular matrix (ECM) components including laminin 5, cytoskeletal elements, but also membrane receptors like the hemidesmosomal components integrin beta4 and collagen XVII, or growth factors and signaling molecules of the TGFbeta, EGF, and Wnt pathways. Finally, an increase of several epidermal differentiation markers was observed in cells and tissue at the protein level. Further examination of the mutant tissue revealed alterations in the filaggrin signal. These differences may be linked to an upregulation of the TGFbeta and the Jun/Fos pathways in mutant keratinocytes. These results are in favor of a role for integrin alpha6beta4 in the maintenance of basal keratinocyte properties and epidermal homeostasis.
    Journal of Cellular Physiology 09/2007; 212(2):439-49. · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Laminin alpha chains have unique spatiotemporal expression patterns during development and defining their function is necessary to understand the regulation of epithelial morphogenesis. We investigated the function of laminin alpha5 in mouse submandibular glands (SMGs). Lama5(-/-) SMGs have a striking phenotype: epithelial clefting is delayed, although proliferation occurs; there is decreased FGFR1b and FGFR2b, but no difference in Lama1 expression; later in development, epithelial cell organization and lumen formation are disrupted. In wild-type SMGs alpha5 and alpha1 are present in epithelial clefts but as branching begins alpha5 expression increases while alpha1 decreases. Lama5 siRNA decreased branching, p42 MAPK phosphorylation, and FGFR expression, and branching was rescued by FGF10. FGFR siRNA decreased Lama5 suggesting that FGFR signaling provides positive feedback for Lama5 expression. Anti-beta1 integrin antibodies decreased FGFR and Lama5 expression, suggesting that beta1 integrin signaling provides positive feedback for Lama5 and FGFR expression. Interestingly, the Itga3(-/-):Itga6(-/-) SMGs have a similar phenotype to Lama5(-/-). Our findings suggest that laminin alpha5 controls SMG epithelial morphogenesis through beta1 integrin signaling by regulating FGFR expression, which also reciprocally regulates the expression of Lama5. These data link changes in basement membrane composition during branching morphogenesis with FGFR expression and signaling.
    Developmental Biology 09/2007; 308(1):15-29. · 3.87 Impact Factor
  • Sarah Escuin, Elisabeth Georges-Labouesse
    03/2007: pages 1-24;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The kelch repeat protein muskelin mediates cytoskeletal responses to the extracellular matrix protein thrombospondin 1, (TSP1), that is known to promote synaptogenesis in the central nervous system (CNS). Muskelin displays intracellular localization and affects cytoskeletal organization in adherent cells. Muskelin is expressed in adult brain and has been reported to bind the Cdk5 activator p39, which also facilitates the formation of functional synapses. Since little is known about muskelin in neuronal tissues, we here analysed the tissue distribution of muskelin in rodent brain and analysed its subcellular localization using cultured neurons from multiple life stages. Our data show that muskelin transcripts and polypeptides are expressed throughout the central nervous system with significantly high levels in hippocampus and cerebellum, a finding that resembles the tissue distribution of p39. At the subcellular level, muskelin is found in the soma, in neurite projections and the nucleus with a punctate distribution in both axons and dendrites. Immunostaining and synaptosome preparations identify partial localization of muskelin at synaptic sites. Differential centrifugation further reveals muskelin in membrane-enriched, rather than cytosolic fractions. Our results suggest that muskelin represents a multifunctional protein associated with membranes and/or large protein complexes in most neurons of the central nervous system. These data are in conclusion with distinct roles of muskelin's functional interaction partners.
    BMC Neuroscience 02/2007; 8:28. · 3.00 Impact Factor

Publication Stats

2k Citations
299.76 Total Impact Points

Institutions

  • 2009–2014
    • University of Strasbourg
      • Institut de Génétique et de Biologie Moléculaire et Cellulaire
      Strasburg, Alsace, France
  • 1996–2013
    • Institut de Génétique et de Biologie Moléculaire et Cellulaire
      Strasburg, Alsace, France
  • 2001
    • Unité Inserm U1077
      Caen, Lower Normandy, France
  • 2000
    • French Institute of Health and Medical Research
      Lutetia Parisorum, Île-de-France, France
  • 1999
    • Collège de France
      Lutetia Parisorum, Île-de-France, France