Xiaolin Wang

Universität Kassel, Cassel, Hesse, Germany

Are you Xiaolin Wang?

Claim your profile

Publications (3)1.34 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a novel 3D NanoImprint methodology with very high vertical resolution well below 1 nm and a minimum surface roughness down to 0.2 nm in root mean square (rms) which is attractive for several applications. We introduce our 3D NanoImprint methodology in fabricating 3D filter cavities of Fabry–Pérot filter arrays for optical nanospectrometers. A large number of different cavity heights can be fabricated in one single imprint step using this high resolution, low-cost 3D NanoImprint technology. The key issue of developing 3D NanoImprint technology is the fabrication of high resolution templates. The novel 3D templates contain arrays of negative or positive checkerboard-like mesa structures with currently up to 64 different heights. Different types of 3D templates were developed and adapted to cutting edge NanoImprint methods and imprint resists. The performance of different 3D NanoImprint recipes was investigated. Based on the novel 3D NanoImprint technology developed in this work, static Fabry–Pérot filter arrays with NanoImprinted cavities indicated rather high filter transmission (best single filter >90%), small line widths (about 2 nm in full width at half maximum) and broad stop bands.
    Microelectronic Engineering 10/2013; 110:44–51. DOI:10.1016/j.mee.2013.04.038 · 1.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Photonic components, including functionalized nanostructured surfaces, obtain increasing importance. With decreasing size, the physical limits of conventional fabrication techniques such as photolithography and etching are encountered. Conventional Nanolmprint templates are mainly focused on only high lateral resolution down to 5 nm [1 ]. Thus, three dimensional (3D) photonic nanostructures, requiring also precise vertical height-control, cannot be addressed on the basis of the conventional technology. In this paper, we present high vertical resolution 3D Nanolmprint technologies and its applications concerning strongly miniaturized spectrometers (nanospectrometers) with optical resolution (λ⁄Δλ) up to 500. Our nanospectrometer consists of a 2D array of Fabry-Pérot (FP) filters, designed to match exactly to a 2D CCD detector array in lateral direction with a resulting system size of 2 x 2 x 4 mm³. The 3D filter cavities were imprinted using both 3D UV-Nanolmprint (UV-NI) technology and Substrate Conformal Imprint Lithography (SCIL). For the deposition of Distributed Bragg Reflectors (DBRs), Plasma Enhanced Chemical Vapour Deposition (PECVD) as well as fen Beam Sputtering Deposition (IBSD) were applied. The filter arrays required for the spectrometer have been demonstrated to have an ultra-high transmittance > 80 % and a Full Width at Half Maximum (FWHM) of down to 1 nm.
    Nonlinear Optics Quantum Optics 10/2012; 43(1-4):339.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microspectrometers are very important and reveal a high potential for networked sensing systems. They are widely implemented in both industrial and scientific applications. A novel Fabry-Pérot-based nanospectrometer with nanoimprinted cavities has been designed. The key parts of the nanospectrometer are Fabry-Pérot filter arrays with different cavity heights which have been fabricated and characterized in detail. All different filter cavities were fabricated in a single step using novel 3D nanoimprint technology with our high vertical resolution 3D nanoimprint templates. Potential combinations of nanoimprint methods and imprint resists were used and characterized. Plasma enhanced chemical vapour deposition (PECVD) and ion beam deposition (IBD) were processed in parallel for depositing distributed Bragg reflectors (DBRs). The filter arrays have been demonstrated to have an ultra-high filter transmittance up to 97%, small line width (FWHM) of less than 2.5 nm and a rather broad stop band over 200 nm.
    Networked Sensing Systems (INSS), 2010 Seventh International Conference on; 07/2010