Are you W. H. Strong?

Claim your profile

Publications (11)0 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Spallation Neutron Source (SNS) at Oak Ridge National Lab (ORNL) is building an independent cryogenic system for its Superconducting Radiofrequency Test Facility (SRFTF). The system will provide refrigeration for the SNS cryomodule test and cavity test at both 2K (using vacuum pumped helium) and 4.5K for the maintenance purposes and the Power Upgrade Project of SNS. It will also provide the part of the cooling power needed to backup the existing CHL to keep the Linac at 4.5K during CHL future maintenance periods. The system will be constructed in multiple phases. The first phase is to construct an independent 4.5K helium refrigeration system with a helium Dewar and distribution box as the load interface. It is scheduled to be commissioned in 2013. Here we report on the design concept for the system and the status of the first phase of this project.
    06/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The first spare cryomodule for the Spallation Neutron Source (SNS) has been designed, fabricated, and tested by SNS personnel. The approach to design for this cryomodule was to hold critical design features identical to the original design such as bayonet positions, coupler positions, cold mass assembly, and overall footprint. However, this is the first SNS cryomodule that meets the pressure requirements put forth in the 10 CFR 851: Worker Safety and Health Program. The most significant difference is that Section VIII of the ASME Boiler and Pressure Vessel Code was applied to the vacuum vessel of this cryomodule. Applying the pressure code to the helium vessels within the cryomodule was considered. However, it was determined to be schedule prohibitive because it required a code case for materials that are not currently covered by the code. Good engineering practice was applied to the internal components to verify the quality and integrity of the entire cryomodule. The design of the cryomodule, fabrication effort, and cryogenic test results will be reported in this paper.
    01/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At the Spallation Neutron Source, the first fully operational pulsed superconducting linac has been active for about two years. During this period, stable beam operation at 4.4 K has been achieved with beam for repetition rates up to 15 Hz and 30 Hz at 2.1 K. At the lower temperature 60 Hz RF pulses have been also used. Full beam energy has been achieved at 15 Hz and short beam pulses. Most of the time the superconducting cavities are operated at somewhat lower gradients to improve reliability. A large amount of data has been collected on the pulsed behavior of cavities and SRF modules at various repetition rates and at various temperatures. This experience will be of great value in determining future optimizations of SNS as well in guiding in the design and operation of future pulsed superconducting linacs. This paper describes the details of the cryogenic system and RF properties of the SNS superconducting linac.
    03/2008;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Superconducting Linac at SNS has been operating with beam for almost two years. As the first operational pulsed superconducting linac, many of the aspects of its performance were unknown and unpredictable. A lot of experience has been gathered during the commissioning of its components, during the beam turn on and during operation at increasingly higher beam power. Some cryomodules have been cold for well over two years and have been extensively tested. The operation has been consistently conducted at 4.4 K and 10 and 15 pulses per second, with some cryomodules tested at 30 and 60 Hz and some tests performed at 2 K. Careful balance between safe operational limits and the study of conditions, parameters and components that create physical limits has been achieved.
    Particle Accelerator Conference, 2007. PAC. IEEE; 07/2007
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The spallation neutron source (SNS) project was completed with only limited superconducting RF (SRF) facilities installed as part of the project. A concerted effort has been initiated to install the infrastructure and equipment necessary to maintain and repair the superconducting Linac, and to support power upgrade research and development (R&D). Installation of a Class 10/100/10,000 cleanroom and outfitting of the test cave with RF, vacuum, controls, personnel protection and cryogenics systems is underway. A horizontal cryostat, which can house a helium vessel/cavity and fundamental power coupler for full power, pulsed testing, is being procured. Equipment for cryomodule assembly and disassembly is being procured. This effort, while derived from the experience of the SRF community, will provide a unique high power test capability as well as long term maintenance capabilities. This paper presents the current status and the future plans for the SNS SRF facilities.
    Particle Accelerator Conference, 2007. PAC. IEEE; 07/2007
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Spallation Neutron Source being built at Oak Ridge National Laboratory employs eighty one 805 MHz superconducting cavities operated at 2.1 K to accelerate the H-beam from 187 MeV to about 1 GeV. The superconducting cavities and cryomodules with two different values of beta (. 61 and .81) have been designed and constructed at Jefferson Lab for operation at 2.1 K with unloaded Q’s in excess of 5×10<sup>9</sup>. To gain experience in testing cryomodules in the SNS tunnel before the final commissioning of the 2.1 K Central Helium Liquefier, integration tests are being conducted on the cryomodules at 4.2 K. This is the first time that a superconducting cavity system specifically designed for 2.1 K operation has been extensively tested at 4.2 K without superfluid helium.
    Particle Accelerator Conference, 2005. PAC 2005. Proceedings of the; 06/2005
  • Source
    P. A. Gurd, W. H. Strong, J. D. Creel
    [Show abstract] [Hide abstract]
    ABSTRACT: The Spallation Neutron Source (SNS) is an accelerator-based neutron source being built in Tennessee by a partnership of six national laboratories. The control system components for the SNS were produced by personnel at the collaborating laboratories, by vendors of the equipment, and by commercial contractors. A number of different approaches were used to provide the programming for both the programmable logic controllers (PLCs) and the input-output controllers (IOCs) which were all based on the Experimental Physics and Industrial Control System (EPICS). For conventional facilities, both the PLCs and the IOCs were programmed under a commercial contract. The PLCs for the high power radio frequency system (HPRF) were programmed by the vendors of the equipment, while the IOCs were programmed by the collaborating laboratory. Finally, while the IOCs for the cryogenic systems were programmed at Oak Ridge, three different approaches were used to produce the PLC programming: some were programmed at Oak Ridge, some at TJNAF, and some at vendor sites. This paper discusses the status of the PLCs in the control system and the integration challenges encountered in the various approaches.
    01/2003;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cryogenic system for the Spallation Neutron Source (SNS) is designed by Jefferson Laboratory (JLab) personnel and is based on the existing JLab facility. Our task is to use the JLab control system design [2] as much as practical while remaining consistent with SNS control system standards. Some aspects of the systems are very similar, including equipment to be controlled, the need for PID loops and automatic sequences, and the use of EPICS. There are differences in device naming, system hardware, and software tools. The cryogenic system is the first SNS system to be developed using SNS standards. This paper reports on our experiences in integrating the new and the old. Comment: 3 pages
    11/2001;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Automatic sequences both ease the task of operating a complex machine and ensure procedural consistency. At the Spallation Neutron Source project (SNS), a set of automatic sequences have been developed to perform the start up and shut down of the high power RF systems. Similarly, sequences have been developed to perform backfill, pump down, automatic valve control and energy management in the cryogenic system. The sequences run on Linux soft input-output controllers (IOCs), which are similar to ordinary EPICS (Experimental Physics and Industrial Control System) IOCs in terms of data sharing with other EPICS processes, but which share a Linux processor with other such processors. Each sequence waits for a command from an operator console and starts the corresponding set of instructions, allowing operators to follow the sequences either from an overview screen or from detail screens. We describe each system and our operational experience with it.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is nearing completion. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The 2.1K cold box consists of four stages of centrifugal compressors with LN2-cooled variable speed electric motors and magnetic bearings. The cryogenic system successfully supported the Linac beam commissioning at both 4.2K and 2.1K and has been fully operational since June 2005. This paper describes the control principles utilized and the experimental results obtained for the SNS cold compressors turn-down capability to about 30% of the design flow, and possible limitation of the frequency dependent power factor of the cold compressor electric motors, which was measured for the first time during commissioning. These results helped to support the operation of the Linac over a very broad and stable cold compressor operating flow range (refrigeration capacity) and pressure. This in turn helped to optimize the cryogenic system operating parameters, minimizing the utilities and improving the system reliability and availability.
  • Source
    P Gurd, G Law, J Munro, W H Strong
    [Show abstract] [Hide abstract]
    ABSTRACT: A re that alarms are defined in the control system. DEFINI W TO way to integrate everything into a single system. bstract The standard EPICS alarm handler tool (ALH) does not integrate well with other EPICS client applications. At SNS, we wanted the ability to incorporate alarm summaries and alarm controls such as masks and resets into screens in the display manager as well as the ability to call display screens from alarm screens. To achieve these aims, we built a soft-IOC-based alarm handler that runs in Linux soft IOCs. A set of scripts builds EPICS databases, display manager screens, and startup scripts for standard Linux soft IOCs from old EPICS Alarm Handler (ALH) or extensible markup language (XML) configuration files. With this new tool the summaries, masks and latch status can be incorporated into other EPICS client applications. In this paper we describe our experience building and using the soft-IOC-based alarm handler everywhe SNS identify alarms as they ha NG THE PROBLEM: HO INTEGRATE ALARMS Previous to the development of the soft-IOC-based alarm handler, the Spallation Neutron Source (SNS) controls group had tried a number of different approaches to alarm handling. The cryogenic systems, the IOC (input-output controller) summary and the operator top-level summary screens used a number of EPICS database calculation records to summarize machine status which was then displayed using the extensible display manager (edm). Some systems such as the target system used the standard EPICS alarm handler (ALH) [3].