M Hitomi

Case Western Reserve University, Cleveland, OH, United States

Are you M Hitomi?

Claim your profile

Publications (9)60.93 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Yeast sec mutations define the machinery of vesicular traffic. Surprisingly, many of these mutations also inhibit ribosome biogenesis by reducing transcription of rRNA and genes encoding ribosomal proteins. We observe that these mutants reversibly inhibit protein import into the nucleus, with import cargo accumulating at the nucleoplasmic face of nuclear pore complexes, as when Ran-GTP cannot bind importins. They also rapidly and reversibly relocate multiple nucleolar and nucleoplasmic proteins to the cytoplasm. The import block and relocation are antagonized by overexpression of yeast Ran, Hog1p kinase, or Ssa/Hsp70 proteins or by inhibition of protein synthesis. These nucleocytoplasmic signaling events document an extraordinary plasticity of nuclear organization.
    Journal of Biological Chemistry 12/1999; 274(47):33785-9. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The DBP5 gene encodes a putative RNA helicase of unknown function in the yeast Saccharomyces cerevisiae. It is shown here that Dbp5p is an ATP-dependent RNA helicase required for polyadenylated [poly(A)+] RNA export. Surprisingly, Dbp5p is present predominantly, if not exclusively, in the cytoplasm, and is highly enriched around the nuclear envelope. This observation raises the possibility that Dbp5p may play a role in unloading or remodeling messenger RNA particles (mRNPs) upon arrival in the cytoplasm and in coupling mRNP export and translation. The functions of Dbp5p are likely to be conserved, since its potential homologues can be found in a variety of eukaryotic cells.
    The EMBO Journal 06/1998; 17(9):2651-62. · 9.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The conditional mRNA transport mutant of Saccharomyces cerevisiae, acc1-7-1 (mtr7-1), displays a unique alteration of the nuclear envelope. Unlike nucleoporin mutants and other RNA transport mutants, the intermembrane space expands, protuberances extend from the inner membrane into the intermembrane space, and vesicles accumulate in the intermembrane space. MTR7 is the same gene as ACC1, encoding acetyl coenzyme A (CoA) carboxylase (Acc1p), the rate-limiting enzyme of de novo fatty acid synthesis. Genetic and biochemical analyses of fatty acid synthesis mutants and acc1-7-1 indicate that the continued synthesis of malonyl-CoA, the enzymatic product of acetyl-CoA carboxylase, is required for an essential pathway which is independent from de novo synthesis of fatty acids. We provide evidence that synthesis of very-long-chain fatty acids (C26 atoms) is inhibited in acc1-7-1, suggesting that very-long-chain fatty acid synthesis is required to maintain a functional nuclear envelope.
    Molecular and Cellular Biology 01/1997; 16(12):7161-72. · 5.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An enormous variety of primary and secondary mRNA structures are compatible with export from the nucleus to the cytoplasm. Therefore, there seems to be a mechanism for RNA export which is independent of sequence recognition. There nevertheless is likely to be some relatively uniform mechanism which allows transcripts to be packaged as ribonucleoprotein particles, to gain access to the periphery of the nucleus and ultimately to translocate across nuclear pores. To study these events, we and others have generated temperature-sensitive recessive mRNA transport (mtr) mutants of Saccharomyces cerevisiae which accumulate poly(A)+ RNA in the nucleus at 37 degrees C. Several of the corresponding genes have been cloned. Upon depletion of one of these proteins, Mtr4p, conspicuous amounts of nuclear poly(A)+ RNA accumulate in association with the nucleolus. Corresponding dense material is also seen by electron microscopy. MTR4 is essential for growth and encodes a novel nuclear protein with a size of approximately 120 kDa. Mtr4p shares characteristic motifs with DEAD-box RNA helicases and associates with RNA. It therefore may well affect RNA conformation. It shows extensive homology to a human predicted gene product and the yeast antiviral protein Ski2p. Critical residues of Mtr4p, including the mtr4-1 point mutation, have been identified. Mtr4p may serve as a chaperone which translocates or normalizes the structure of mRNAs in preparation for export.
    Molecular and Cellular Biology 10/1996; 16(9):5139-46. · 5.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synthesis of mRNA and rRNA occur in the chromatin-rich nucleoplasm and the nucleolus, respectively. Nevertheless, we here report that a Saccharomyces cerevisiae gene, MTR3, previously implicated in mRNA transport, codes for a novel essential 28-kDa nucleolar protein. Moreover, in mtr3-1 the accumulated polyA+ RNA actually colocalizes with nucleolar antigens, the nucleolus becomes somewhat disorganized, and rRNA synthesis and processing are inhibited. A strain with a ts conditional mutation in RNA polymerase I also shows nucleolar accumulation of polyA+ RNA, whereas strains with mutations in the nucleolar protein Nop1p do not. Thus, in several mutant backgrounds, when mRNA cannot be exported i concentrates in the nucleolus. mRNA may normally encounter nucleolar components before export and proteins such as Mtr3p may be critical for export of both mRNA and ribosomal subunits.
    Molecular Biology of the Cell 10/1995; 6(9):1103-10. · 4.60 Impact Factor
  • Source
    S Liang, M Hitomi, A M Tartakoff
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms of export of RNA from the nucleus are poorly understood; however, several viral proteins modulate nucleocytoplasmic transport of mRNA. Among these are the adenoviral proteins E1B-55kDa and E4-34kDa. Late in infection, these proteins inhibit export of host transcripts and promote export of viral mRNA. To investigate the mechanism by which these proteins act, we have expressed them in Saccharomyces cerevisiae. Overexpression of either or both proteins has no obvious effect on cell growth. By contrast, overexpression of E1B-55kDa bearing a nuclear localization signal (NLS) dramatically inhibits cell growth. In this situation, the NLS-E1B-55kDa protein is localized to the nuclear periphery, fibrous material is seen in the nucleoplasm, and poly(A)+ RNA accumulates in the nucleus. Simultaneous overexpression of E4-34kDa bearing or lacking an NLS does not modify these effects. We discuss the mechanisms of selective mRNA transport.
    Proceedings of the National Academy of Sciences 09/1995; 92(16):7372-5. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have identified a temperature-sensitive mutant of Saccharomyces cerevisiae (npl3) that accumulates polyadenylated RNA in the nucleus at 37 degrees C, as judged by in situ hybridization. The strong nuclear signal is not simply due to increased cytoplasmic turnover of mRNA, as reincubation at 37 degrees C with an RNA polymerase inhibitor shows no diminution in the in situ signal. Over several hours at 37 degrees C, the average poly(A) tail length increases and a characteristic ultrastructural alteration of the nucleoplasm occurs. Cloning and sequencing indicate that the corresponding gene is NPL3/NOP3, which codes for a nucleolar/nuclear protein implicated in protein import into the nucleus (Bossie et al. (1992). Mol. Biol. Cell 3, 875-893) and in rRNA maturation (Russell and Tollervey (1992). J. Cell Biol. 119, 737-747). NPL3 includes bipartite RNA recognition motifs (RRM) and a Gly-Arg repeat domain, as in several nucleolar proteins. A point mutation adjacent to one of the RRM has been identified in the ts copy of the gene. Although this protein is not concentrated in nuclear pores, NPL3 is implicated in both import and export from the nucleus. Judging from the site of the npl3 mutation and since the block in RNA export can be detected prior to an obvious nuclear import defect in npl3, the defect in RNA export may be primary. Since other mutants that interrupt RNA export do not block protein import, the NPL3 protein itself appears to be implicated in protein import.
    Journal of Cell Science 02/1995; 108 ( Pt 1):265-72. · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have identified a set of genes that affect mRNA transport (mtr) from the nucleus to the cytoplasm of Saccharomyces cerevisiae. One of these genes, MTR2, has been cloned and shown to encode a novel 21-kDa nuclear protein that is essential for vegetative growth. MTR2 shows limited homology to a protein implicated in plasmid DNA transfer in Escherichia coli. PolyA+RNA accumulates within the nucleus of mtr2-1 in two to three foci at 37 degrees C. mRNA, tRNA, and rRNA synthesis continue as do pre-mRNA splicing, tRNA processing, and rRNA export at 37 degrees C. Under these conditions the polyA tail length increases, and protein synthesis is progressively inhibited. Nucleolar antigens also redistribute to two to three nuclear foci at 37 degrees C, and this redistribution depends on ongoing transcription by RNA polymerase II. Surprisingly, these foci coincide with the sites of polyA+RNA accumulation. Comparable colocalization and dependance on RNA polymerase II transcription is seen for the mtr1-1 mutant. The disorganization of the nucleolus thus depends on mRNA accumulation in these mutants. We discuss the possible functions of MTR2 and the yeast nucleolus in mRNA export.
    Molecular Biology of the Cell 12/1994; 5(11):1253-63. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand the mechanisms of mRNA transport in eukaryotes, we have isolated Saccharomyces cerevisiae temperature-sensitive (ts) mutants which accumulate poly(A)+ RNA in the nucleus at the restrictive temperature. A total of 21 recessive mutants were isolated and classified into 16 complementation groups. Backcrossed mRNA transport-defective strains from each complementation group have been analyzed. A strain which is ts for heat shock transcription factor was also analyzed since it also shows nuclear accumulation of poly(A)+ RNA at 37 degrees C. At 37 degrees C the mRNA of each mutant is characterized by atypically long polyA tails. Unlike ts pre-mRNA splicing mutants, these strains do not interrupt splicing of pre-mRNA at 37 degrees C; however four strains accumulate oversized RNA polymerase II transcripts. Some show inhibition of rRNA processing and a further subset of these strains is also characterized by inhibition of tRNA maturation. Several strains accumulate nuclear proteins in the cytoplasm when incubated at semipermissive temperature. Remarkably, many strains exhibit nucleolar fragmentation or enlargement at the restrictive temperature. Most strains show dramatic ultrastructural alterations of the nucleoplasm or nuclear membrane. Distinct mutants accumulate poly(A)+ RNA in characteristic patterns in the nucleus.
    The Journal of Cell Biology 09/1994; 126(3):649-59. · 10.82 Impact Factor

Publication Stats

607 Citations
60.93 Total Impact Points

Institutions

  • 1994–1999
    • Case Western Reserve University
      • • Department of Pathology (University Hospitals Case Medical Center)
      • • Institute of Pathology
      Cleveland, OH, United States
  • 1998
    • Case Western Reserve University School of Medicine
      Cleveland, Ohio, United States
  • 1995
    • Harvard Medical School
      • Department of Genetics
      Boston, MA, United States