S Coupe

The University of Manchester, Manchester, England, United Kingdom

Are you S Coupe?

Claim your profile

Publications (4)0 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper outlines a strategy for representing and localising rigid three dimensional objects in images using edge data. A probabilistic metric combining edge strength and corresponding orientation information is developed to support this process. A process of lateral feature shifting in the image plane is presented to quantitatively account for a range of modelling/ illumination dependencies. We show that this mechanism is required to get good agreement between model and image data.
    Visual Information Engineering, 2008. VIE 2008. 5th International Conference on; 09/2008
  • Source
    S. Coupe, N. Thacker
    [Show abstract] [Hide abstract]
    ABSTRACT: We observe that conventional approaches to the construction of likelihood models of visual appearance for image features are non-quantitative, precluding their use in tasks such as hypothesis testing for projected view validation. This document outlines a quantitative approach for verification of 3D objects' predicted edge features in images, which incorporates both the effects of image noise and local image structure. This approach supports the construction of a joint probability for the degree of conformity of image data to both edge orientation and location, without the need for arbitrary relative scale factors. The method has been validated on multiple views of man-made objects constructed froma variety of materials.
    Computer and Robot Vision, 2008. CRV '08. Canadian Conference on; 06/2008
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes an approach for the representation of projected 3D edge features for pur-poses of view-based recognition and localisation of objects. It is based upon the representation of arbitrary configurations of features using geometric co-occurrence as Pairwise Geometric Histograms (PGH). We describe a mathematical model for the interpolation of correlated changes in these histograms, comprising two independent linear models for use during simul-taneous view and scale matching. Mismatch and match distributions are provided to give a context for the accuracy of approximation. Assessment of the utility of this approach for object localisation is given in a companion paper at this conference.
  • Source
    N A Thacker, S Coupe
    [Show abstract] [Hide abstract]
    ABSTRACT: A comparison of view-based and 3D model-based methods for localisation of man-made objects is made in the context of a working system. A projection validation approach is taken in order to confirm location hypotheses, which is based upon quantitative statistical models of feature detection and orientation. Results are provided which suggest that 3D data from stereo vision systems might be better employed for the prediction of novel views of objects, rather than as a generator of spatial representation suitable for geometric reasoning.

Publication Stats

1 Citation

Top Journals

Institutions

  • 2008
    • The University of Manchester
      • Manchester Medical School
      Manchester, England, United Kingdom