Denise Manahan-Vaughan

Ruhr-Universität Bochum, Bochum, North Rhine-Westphalia, Germany

Are you Denise Manahan-Vaughan?

Claim your profile

Publications (116)559.09 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulation of amyloid plaques comprises one of the major hallmarks of Alzheimer's disease (AD). In rodents, acute treatment with amyloid-beta (Aβ; 1-42) elicits immediate debilitating effects on hippocampal long-term potentiation (LTP). Whereas LTP contributes to synaptic information storage, information is transferred across neurons by means of neuronal oscillations. Furthermore, changes in theta-gamma oscillations, that appear during high-frequency stimulation (HFS) to induce LTP, predict whether successful LTP will occur. Here, we explored if intra-cerebral treatment with Aβ(1-42), that prevents LTP, also results in alterations of hippocampal oscillations that occur during HFS of the perforant path-dentate gyrus synapse in 6-month-old behaving rats. HFS resulted in LTP that lasted for over 24 h. In Aβ-treated animals, LTP was significantly prevented. During HFS, spectral power for oscillations below 100 Hz (δ, θ, α, β and γ) was significantly higher in Aβ-treated animals compared to controls. In addition, the trough-to-peak amplitudes of theta and gamma cycles were higher during HFS in Aβ-treated animals. We also observed a lower amount of envelope-to-signal correlations during HFS in Aβ-treated animals. Overall, the characteristic profile of theta-gamma oscillations that accompany successful LTP induction was disrupted. These data indicate that alterations in network oscillations accompany Aβ-effects on hippocampal LTP. This may comprise an underlying mechanism through which disturbances in synaptic information storage and hippocampus-dependent memory occurs in AD.
    Frontiers in Behavioral Neuroscience 05/2015; 9. DOI:10.3389/fnbeh.2015.00103 · 4.16 Impact Factor
  • Tanja Novkovic, Rolf Heumann, Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental enrichment (EE), which mimics the wealth of sensory, motor and cognitive stimuli that arise through intense interactions with the ambient environment, results in enhanced hippocampal long-term potentiation (LTP) and spatial learning. A key molecular factor in the mediation of these changes is brain-derived neurotrophic factor (BDNF). One of the downstream cascades that is activated by BDNF is the cascade linked to the small GTPase, Ras, that triggers mitogen-activated protein kinase (MAPK) activity and is part of the cAMPresponse element-binding protein (CREB) pathway that can lead to synaptic restructuring to support LTP. Here, we explored whether persistent activation of Ras in neurons further enhances LTP following EE of rodents. Immediately following weaning, transgenic mice that expressed consitutively activated neuronal Ras, or their wildtype littermates, underwent 3 weeks of constant EE. In the absence of EE, theta burst stimulation (TBS) evoked LTP in the CA1 region of transgenic mice that was not significantly different from LTP in wildtypes. After three weeks of EE, hippocampal LTP was improved wildtype mice. Enriched transgenic mice showed an equivalent level of LTP to enriched wildtypes, but it was not significantly different from non-enriched synRas controls. Western blot analysis performed after a pull-down assay showed that non-enriched transgenic mice expressed higher Ras activity compared to non-enriched wildtypes. Following EE, Ras activity was reduced in transgenics to levels detected in wildtypes. These results show that constitutive activation of Ras does not mimic the effects of EE on LTP. In addition, EE results in an equivalent enhancement of LTP transgenics and wildtypes, coupled with a decrease in Ras activity to wildtype levels. This suggests that permanent activation of Ras in neurons of synRas animals following EE results in an altered feedback regulation of endogenous Ras activity that is not a key factor in LTP enhancements. The maintenance of Ras within a physiological range may thus be required for the optimisation of LTP in the hippocampus. Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience 04/2015; DOI:10.1016/j.neuroscience.2015.04.052 · 3.33 Impact Factor
  • Hardy Hagena, Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Within the hippocampus, different kinds of spatial experience determine the direction of change of synaptic weights. Synaptic plasticity resulting from such experience may enable memory encoding. The CA3 region is very striking in this regard: due to the distinct molecular properties of the mossy fiber (MF) and associational-commissural (AC) synapses, it is believed that they enable working memory and pattern completion. The question arises, however, as to how information reaching these synapses results in differentiated encoding. Given its crucial role in enabling persistent synaptic plasticity in other hippocampal subfields, we speculated that the metabotropic glutamate receptor mGlu5 may regulate information encoding at MF and AC synapses. Here, we show that antagonism of mGlu5 inhibits LTP, but not LTD at MF synapses of freely behaving adult rats. Conversely, mGlu5 antagonism prevents LTD but not LTP at AC-CA3 synapses. This suggests that, under conditions in which mGlu5 is activated, LTP may be preferentially induced at MF synapses, whereas LTD is favored at AC synapses. To assess this possibility, we applied 50 Hz stimulation that should generate postsynaptic activity that corresponds to θm, the activation threshold that lies between LTP and LTD. MGlu5 activation had no effect on AC responses but potentiated MF synapses. These data suggest that mGlu5 serves as a switch that alters signal-to-noise ratios during information encoding in the CA3 region. This mechanism supports highly tuned and differentiated information storage in CA3 synapses. Copyright © 2015 the authors 0270-6474/15/354999-08$15.00/0.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 03/2015; 35(12):4999-5006. DOI:10.1523/JNEUROSCI.3417-14.2015 · 6.75 Impact Factor
  • Tanja Novkovic, Olena Shchyglo, Ralf Gold, Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is a progressive inflammatory autoimmune disease that is characterised by demyelination and axonal damage in the nervous system. One obvious consequence is a cumulative loss of muscle control. However, cognitive dysfunction affects roughly half of MS sufferers, sometimes already early in the disease course. Although long-term (remote) memory is typically unaffected, the ability to form new declarative memories becomes compromised. A major structure for the encoding of new declarative memories is the hippocampus. Encoding is believed to be mediated by synaptic plasticity in the form of long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength. Here, in an animal model of MS we explored whether disease symptoms are accompanied by a loss of functional neuronal integrity, synaptic plasticity, or hippocampus-dependent learning ability. In mice that developed MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), passive properties of CA1 pyramidal neurons were unaffected, although the ability to fire action potentials became reduced in the late phase of EAE. LTP remained normal in the early phase of MOG35-55-induced EAE. However, in the late phase, LTP was impaired and LTP-related spatial memory was impaired. In contrast, LTD and hippocampus-dependent object recognition memory were unaffected. These data suggest that in an animal model of MS hippocampal function becomes compromised as the disease progresses. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
    Neuroscience 03/2015; DOI:10.1016/j.neuroscience.2015.03.008 · 3.33 Impact Factor
  • Source
    Ayla Aksoy-Aksel, Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: The hippocampal CA1 region receives cortical information via two main inputs: directly via the perforant (temporoammonic) path (pp-CA1 synapse) and indirectly via the tri-synaptic pathway. Although synaptic plasticity has been reported at the pp-CA1 synapse of freely behaving animals, the mechanisms underlying this phenomenon have not been investigated. Here, we explored whether long-term potentiation (LTP) at the pp-CA1 synapse in freely behaving rats requires activation of N-methyl-d-aspartate receptors (NMDAR) and L-type voltage-gated calcium channels (VGCCs). As group II metabotropic glutamate (mGlu) receptors are densely localized on presynaptic terminals of the perforant path, and are important for certain forms of hippocampal synaptic plasticity, we also explored whether group II mGlu receptors affect LTP at the pp-CA1 synapse and/or regulate basal synaptic transmission at this synapse in vivo.
    Neuroscience 03/2015; 52. DOI:10.1016/j.neuroscience.2015.03.014 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The second messenger cyclic GMP affects synaptic transmission and modulates synaptic plasticity and certain types of learning and memory processes. The impact of the natriuretic peptide receptor B (NPR-B) and its ligand C-type natriuretic peptide (CNP), one of several cGMP producing signaling systems, on hippocampal synaptic plasticity and learning is, however, less well understood. We have previously shown that the NPR-B ligand CNP increases the magnitude of long-term depression (LTD) in hippocampal area CA1, while reducing the induction of long-term potentiation (LTP). We have extended this line of research to show that bidirectional plasticity is affected in the opposite way in rats expressing a dominant-negative mutant of NPR-B (NSE-NPR-BΔKC) lacking the intracellular guanylyl cyclase domain under control of a promoter for neuron-specific enolase. The brain cells of these transgenic rats express functional dimers of the NPR-B receptor containing the dominant-negative NPR-BΔKC mutant, and therefore show decreased CNP-stimulated cGMP-production in brain membranes. The NPR-B transgenic rats display enhanced LTP but reduced LTD in hippocampal slices. When the frequency-dependence of synaptic modification to afferent stimulation in the range of 1-100 Hz was assessed in transgenic rats, the threshold for both, LTP and LTD induction, was shifted to lower frequencies. In parallel, NPR-BΔKC rats exhibited an enhancement in exploratory and learning behavior. These results indicate that bidirectional plasticity and learning and memory mechanism are affected in transgenic rats expressing a dominant-negative mutant of NPR-B. Our data substantiate the hypothesis that NPR-B-dependent cGMP signaling has a modulatory role for synaptic information storage and learning.
    Frontiers in Molecular Neuroscience 12/2014; 7:95. DOI:10.3389/fnmol.2014.00095
  • Source
    Sijie Zhang, Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: The metabotropic glutamate (mGlu) receptors are critically involved in enabling the persistency of forms of synaptic plasticity that are believed to underlie hippocampus-dependent memory. These receptors and in particular, mGlu5, are also required for hippocampus-dependent learning and memory. In the hippocampus, synaptic plasticity is one of the mechanisms by which spatial information may be represented. Another mechanism involves increased firing of place cells. Place cells increase their firing activity when an animal is in a specific spatial location. Inhibition of factors that are essential for synaptic plasticity, such as N-methyl-D-aspartate receptors or protein synthesis, also impair place cell activity. This raises the question as to whether mGlu receptors, that are so important for synaptic plasticity and spatial memory, are also important for place cell encoding. We examined location-dependent place cell firing i.e. place fields. We observed that antagonism of mGlu5, using 2-methyl-6-(phenylethynyl) pyridine (MPEP) had no effect on place field profiles in a familiar environment. However, in a novel environment mGlu5-antagonism affected long-term place field stability, reduced place cell firing and spatial information. These data strongly suggest a role for mGlu5 in the mechanisms underlying informational content and long-term stability of place fields, and add to evidence supporting the importance of these receptors for hippocampal function. © 2014 Wiley Periodicals, Inc.
    Hippocampus 11/2014; 24(11). DOI:10.1002/hipo.22314 · 4.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice.
    PLoS ONE 08/2014; 9(8):e105589. DOI:10.1371/journal.pone.0105589 · 3.53 Impact Factor
  • Source
    Sijie Zhang, Fabian Schönfeld, Laurenz Wiskott, Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Effective spatial navigation is enabled by reliable reference cues that derive from sensory information from the external environment, as well as from internal sources such as the vestibular system. The integration of information from these sources enables dead reckoning in the form of path integration. Navigation in the dark is associated with the accumulation of errors in terms of perception of allocentric position and this may relate to error accumulation in path integration. We assessed this by recording from place cells in the dark under circumstances where spatial sensory cues were suppressed. Spatial information content, spatial coherence, place field size, and peak and infield firing rates decreased whereas sparsity increased following exploration in the dark compared to the light. Nonetheless it was observed that place field stability in darkness was sustained by border information in a subset of place cells. To examine the impact of encountering the environment's border on navigation, we analyzed the trajectory and spiking data gathered during navigation in the dark. Our data suggest that although error accumulation in path integration drives place field drift in darkness, under circumstances where border contact is possible, this information is integrated to enable retention of spatial representations.
    Frontiers in Behavioral Neuroscience 06/2014; 8:222. DOI:10.3389/fnbeh.2014.00222 · 4.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hippocampus is vulnerable to age-dependent memory decline. Multiple forms of memory depend on adequate hippocampal function. Extinction learning comprises active inhibition of no longer relevant learned information concurrent with suppression of a previously learned reaction. It is highly dependent on context, and evidence exists that it requires hippocampal activation. In this study we addressed whether context-based extinction as well as hippocampus-dependent tasks such as, object recognition and object-place recognition, are equally affected by moderate aging. Young (7-8 week old) and older (7-8 month old) Wistar rats were used. For the extinction study, animals learned that a particular floor context indicated that they should turn into one specific arm (e.g. left) to receive a food reward. On the day after reaching the learning criterion of 80% correct choices, the floor context was changed, no reward was given and animals were expected to extinguish the learned response. Both, young and older rats managed this first extinction trial in the new context with older rats showing a faster extinction performance. One day later, animals were returned to the T-maze with the original floor context and renewal effects were assessed. In this case, only young but not older rats showed the expected renewal effect (lower extinction ratio as compared to the day before). To assess general memory abilities, animals were tested in the standard object recognition and object-place memory tasks. Evaluations were made at 5 min, 1h and 7 day intervals. Object recognition memory was poor at short-term and intermediate time-points in older but not young rats. Object-place memory performance was unaffected at 5 min, but impaired at 1h in older but not young rats. Both groups were impaired at 7 days. These findings support that not only aspects of general memory, but also context-dependent extinction learning, are affected by moderate aging. This may reflect less flexibility in revising hard-wired knowledge or reduced adaptability to new learning challenges. © 2013 Wiley Periodicals, Inc.
    Hippocampus 03/2014; 24(3). DOI:10.1002/hipo.22220 · 4.30 Impact Factor
  • Jinzhong Jeremy Goh, Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Experience-dependent synaptic plasticity is widely expressed in the mammalian brain and is believed to underlie memory formation. Persistent forms of synaptic plasticity in the hippocampus, such as long-term potentiation (LTP) and long-term depression (LTD) are particularly of interest, as evidence is accumulating that they are expressed as a consequence of, or at the very least in association with, hippocampus-dependent novel learning events. Learning-facilitated plasticity describes the property of hippocampal synapses to express persistent synaptic plasticity when novel spatial learning is combined with afferent stimulation that is subthreshold for induction of changes in synaptic strength. In mice it occurs following novel object recognition and novel object-place recognition. Calmodulin-dependent kinase II (CAMKII) is strongly expressed in synapses and has been shown to be required for hippocampal LTP in vitro and for spatial learning in the water maze. Here, we show that in mice that undergo persistent inhibitory autophosphorylation of αCAMKII, object-place learning is intact. Furthermore, these animals demonstrate a higher threshold for induction of persistent (>24h) hippocampal LTP in the hippocampal CA1 region during unrestrained behaviour. The transgenic mice also express short-term depression in response to afferent stimulation frequencies that are ineffective in controls. Furthermore, they express stronger LTD in response to novel learning of spatial configurations compared to controls. These findings support that modulation of αCAMKII activity via autophosphorylation at the Thr305/306 site comprises a key mechanism for the maintenance of synaptic plasticity within a dynamic range. They also indicate that a functional differentiation occurs in the way spatial information is encoded: whereas LTP is likely to be critically involved in the encoding of space per se, LTD appears to play a special role in the encoding of the content or features of space.
    Behavioural brain research 01/2014; 285. DOI:10.1016/j.bbr.2014.01.022 · 3.39 Impact Factor
  • Niels Hansen, Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic plasticity comprises a cellular mechanism through which the hippocampus most likely enables memory formation. Neuromodulation, related to arousal, is a key aspect in information storage. The activation of locus coeruleus (LC) neurons by novel experience leads to noradrenaline release in the hippocampus at the level of the dentate gyrus (DG). We explored whether synaptic plasticity in the DG is influenced by activation of the LC via electrical stimulation. Coupling of test-pulses that evoked stable basal synaptic transmission in the DG with stimulation of the LC induced β-adrenoreceptor-dependent long-term depression (LTD) at perforant path-DG synapses in adult rats. Furthermore, persistent LTD (>24 h) induced by perforant path stimulation also required activation of β-adrenergic receptors: Whereas a β-adrenergic receptor antagonist (propranolol) prevented, an agonist (isoproterenol) strengthened the persistence of LTD for over 24 h. These findings support the hypothesis that persistent LTD in the DG is modulated by β-adrenergic receptors. Furthermore, LC activation potently facilitates DG LTD. This suggests in turn that synaptic plasticity in the DG is tightly regulated by activity in the noradrenergic system. This may reflect the role of the LC in selecting salient information for subsequent synaptic processing in the hippocampus.
    Cerebral Cortex 01/2014; DOI:10.1093/cercor/bht429 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Noncompetitive N-methyl-d-aspartate receptor antagonists such as phencyclidine and MK-801 are known to impair cognitive function in rodents and humans, and serve as a useful tool to study the cellular basis for pathogenesis of schizophrenia cognitive symptoms. In the present study, we tested in rats the effect of MK-801 on ventral hippocampus (HPC)-medial prefrontal cortex (mPFC) synaptic transmission and the performance in 2 cognitive tasks. We found that single injection of MK-801 (0.1 mg/kg) induced gradual and long-lasting increases of the HPC-mPFC response, which shares the common expression mechanisms with long-term potentiation (LTP). But unlike LTP, its induction required no enhanced or synchronized synaptic inputs, suggesting aberrant characteristics. In parallel, rats injected with MK-801 showed impairments of mPFC-dependent cognitive flexibility and HPC-mPFC pathway-dependent spatial working memory. The effects of MK-801 on HPC-mPFC responses and spatial working memory decayed in parallel within 24 h. Moreover, the therapeutically important subtype 2/3 metabotropic glutamate receptor agonist LY379268, which blocked MK-801-induced potentiation, ameliorated the MK-801-induced impairment of spatial working memory. Our results show a novel form of use-independent long-lasting potentiation in HPC-mPFC pathway induced by MK-801, which is associated with impairment of HPC-mPFC projection-dependent cognitive function.
    Cerebral Cortex 12/2013; DOI:10.1093/cercor/bht329 · 8.31 Impact Factor
  • Jinzhong Jeremy Goh, Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: In the intact mouse hippocampus patterned afferent stimulation does not lead to long-term depression (LTD) at Schaffer collateral (Sc)-CA1 synapses, but the same synapses express robust LTD (<24 h) if test-pulse or patterned afferent experience is coupled with novel spatial learning. This suggests that the failure of sole afferent stimulation to elicit LTD relates to the absence of neuromodulatory input related to increased arousal or novelty during learning. Locus coeruleus (LC) firing increases during novel experience, and in rats patterned stimulation of the LC together with test-pulse stimulation of Sc-CA1 synapses leads to robust LTD in vivo. This effect is mediated by beta-adrenergic receptors. Here, we explored if activation of beta-adrenergic receptors supports the expression of LTD in freely behaving mice. We also explored if beta-adrenergic receptors contribute to endogenous LTD that is expressed following spatial learning. Patterned stimulation of Sc-CA1 synapses at 3 Hz (200 pulses) resulted in short-term depression (STD). Pretreatment with isoproterenol, an agonist of beta-adrenergic receptors, resulted in robust LTD (<24 h). Test-pulse stimulation under controls conditions elicited field potentials that were stable for the 24-h monitoring period. Coupling of test-pulses with a novel spatial object recognition task resulted in robust endogenous LTD (<24 h). Pretreatment with propranolol, a beta-adrenergic receptor antagonist, completely prevented endogenous LTD that was enabled by learning and prevented object recognition learning itself. These data indicate that the absence of LTD in freely behaving mice, under standard recording conditions, does not reflect an inability of mice to express LTD, rather it is due to the absence of an noradrenalin tonus. Our data also support that spatial object recognition requires beta-adrenergic receptor activation. Furthermore, LTD that is enabled by novel spatial learning critically depends on activation of beta-adrenergic receptors that are presumably activated by noradrenalin released by the LC in response to the novel experience. © 2013 Wiley Periodicals, Inc.
    Hippocampus 12/2013; 23(12). DOI:10.1002/hipo.22168 · 4.30 Impact Factor
  • Source
    Jana Kenney, Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: The dorsoventral axis of the hippocampus is differentiated into dorsal, intermediate, and ventral parts. Whereas the dorsal part is believed to specialize in processing spatial information, the ventral may be equipped to process non-spatial information. The precise role of the intermediate hippocampus is unclear, although recent data suggests it is functionally distinct, at least from the dorsal hippocampus. Learning-facilitated synaptic plasticity describes the ability of hippocampal synapses to respond with robust synaptic plasticity (>24 h) when a spatial learning event is coupled with afferent stimulation that would normally not lead to a lasting plasticity response: in the dorsal hippocampus novel space facilitates robust expression of long-term potentiation (LTP), whereas novel spatial content facilitates long-term depression (LTD). We explored whether the intermediate hippocampus engages in this kind of synaptic plasticity in response to novel spatial experience. In freely moving rats, high-frequency stimulation at 200 Hz (3 bursts of 15 stimuli) elicited synaptic potentiation that lasted for at least 4 h. Coupling of this stimulation with the exploration of a novel holeboard resulted in LTP that lasted for over 24 h. Low frequency afferent stimulation (1 Hz, 900 pulses) resulted in short-term depression (STD) that was significantly enhanced and prolonged by exposure to a novel large orientational (landmark) cues, however LTD was not enabled. Exposure to a holeboard that included novel objects in the holeboard holes elicited a transient enhancement of STD of the population spike (PS) but not field EPSP, and also failed to facilitate the expression of LTD. Our data suggest that the intermediate dentate gyrus engages in processing of spatial information, but is functionally distinct to the dorsal dentate gyrus. This may in turn reflect their assumed different roles in synaptic information processing and memory formation.
    Frontiers in Synaptic Neuroscience 10/2013; 5:10. DOI:10.3389/fnsyn.2013.00010
  • Marion Agnès Emma André, Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, it has emerged that visual spatial exploration facilitates synaptic plasticity at different synapses within the trisynaptic network. Particularly striking is the finding that visuospatial contexts facilitate hippocampal long-term depression (LTD), raising the possibility that this form of plasticity may be important for memory formation. It is not known whether other sensory modalities elicit similar permissive effects on LTD. Here, we explored if spatial olfactory learning facilitates LTD in the hippocampus region of freely behaving rats rats. Patterned afferent stimulation of the Schaffer collaterals elicited short-term depression (STD) (<1h) of evoked responses in the Stratum radiatum of the CA1 region. Coupling of this protocol with novel exploration of a spatial constellation of olfactory cues facilitated short-term depression into LTD that lasted for over 24h. Facilitation of LTD did not occur when animals were re-exposed 1 week later to the same odors in the same spatial constellation. Evaluation of learning behavior revealed that 1 week after the 1(st) odor exposure, the animals remembered the odors. These data support that the hippocampus can use non-visuospatial resources, and specifically can use spatial olfactory information, to facilitate LTD and to generate spatial representations. The data also support that a tight relationship exists between the processing of spatial contextual information and the expression of LTD in the hippocampus. © 2013 Wiley Periodicals, Inc.
    Hippocampus 10/2013; 23(10). DOI:10.1002/hipo.22158 · 4.30 Impact Factor
  • Source
    Sijie Zhang, Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Spatial encoding in the hippocampus is multifactorial, and it is well established that metric information about space is conferred by place cells that fire when an animal finds itself in a specific environmental location. Visuospatial contexts comprise a key element in the formation of place fields. Nevertheless, hippocampus does not only use visual cues to generate spatial representations. In the absence of visual input, both humans and other vertebrates studied in this context, are capable of generating very effective spatial representations. However, little is known about the relationship between nonvisual sensory modalities and the establishment of place fields. Substantial evidence exists that olfactory information can be used to learn spatial contexts. Here, we report that learning about a distinct odor constellation in an environment, where visual and auditory cues are suppressed, results in stable place fields that rotate when the odor constellations are rotated and remap when the odor constellations are shuffled. These data support that the hippocampus can use nonvisuospatial resources, and specifically can use spatial olfactory information, to generate spatial representations. Despite the less precise nature of olfactory stimuli compared with visual stimuli, these can substitute for visual inputs to enable the acquisition of metric information about space.
    Cerebral Cortex 09/2013; 25(2). DOI:10.1093/cercor/bht239 · 8.31 Impact Factor
  • Source
    Ayla Aksoy-Aksel, Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: In terms of its sub-regional differentiation, the hippocampal CA1 region receives cortical information directly via the perforant (temporoammonic) path (pp-CA1 synapse) and indirectly via the tri-synaptic pathway where the last relay station is the Schaffer collateral-CA1 synapse (Sc-CA1 synapse). Research to date on pp-CA1 synapses has been conducted predominantly in vitro and never in awake animals, but these studies hint that information processing at this synapse might be distinct to processing at the Sc-CA1 synapse. Here, we characterized synaptic properties and synaptic plasticity at the pp-CA1 synapse of freely behaving adult rats. We observed that field excitatory postsynaptic potentials at the pp-CA1 synapse have longer onset latencies and a shorter time-to-peak compared to the Sc-CA1 synapse. LTP (>24 h) was successfully evoked by tetanic afferent stimulation of pp-CA1 synapses. Low frequency stimulation evoked synaptic depression at Sc-CA1 synapses, but did not elicit LTD at pp-CA1 synapses unless the Schaffer collateral afferents to the CA1 region had been severed. Paired-pulse responses also showed significant differences. Our data suggest that synaptic plasticity at the pp-CA1 synapse is distinct from the Sc-CA1 synapse and that this may reflect its specific role in hippocampal information processing.
    Frontiers in Synaptic Neuroscience 08/2013; 5:5. DOI:10.3389/fnsyn.2013.00005
  • Anne Kemp, Wolfgang Tischmeyer, Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: De novo gene transcription is a prerequisite for long-term information storage in the brain. Learning-facilitated synaptic plasticity describes the ability of hippocampal synapses to respond with long-lasting synaptic plasticity to the coupling of afferent stimulation with a spatial learning experience. Strikingly, long-term depression (LTD) is facilitated by context-dependent spatial learning experiences suggesting it may play a role in information storage to enable spatial memory. Here, we investigated if learning-facilitated LTD requires the transcription factor, c-Fos and is transcription-dependent. Novel spatial learning about object-place configurations coupled with weak low frequency afferent stimulation induced robust LTD in control animals that persisted for>24h and was associated with elevations in hippocampal expression of c-Fos. Intracerebral application of a c-fos antisense oligonucleotide prevented the facilitation of LTD by novel spatial learning, inhibited elevations of c-Fos triggered by LTD and impaired spatial learning. The expression of the transcription factor zif268 was unaffected by the c-fos antisense oligonucleotide. Learning-facilitated LTD was prevented by a transcription inhibitor. These data support that learning-facilitated LTD requires elevations in c-Fos and is transcription dependent. The observation that LTD shares key regulatory mechanisms with learning and memory processes argues strongly for a role for this form of synaptic plasticity in long-term information storage in the hippocampus.
    Behavioural brain research 04/2013; DOI:10.1016/j.bbr.2013.04.036 · 3.39 Impact Factor
  • Jana Kenney, Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: The hippocampus may be functionally differentiated along its dorsoventral axis. In contrast to the wealth of data available on synaptic plasticity mechanisms in the dorsal hippocampus, little is known about synaptic plasticity processes in the intermediate hippocampus. Behavioural data suggest that this structure may play a distinct role in learning and memory. Here, we compared amplitudes, frequency-dependency and persistency of long-term potentiation (LTP) and long-term depression (LTD) in the dorsal (DDG) and intermediate dentate gyrus (IDG). In freely moving rats, high-frequency stimulation (HFS) at 200Hz (10 burst of 15 stimuli) elicited LTP of similar magnitude in both structures that persisted for over 24h. The intermediate dentate gyrus is more likely to exhibit persistent LTP than its dorsal counterpart, however: HFS at 200Hz (3 or 1 burst(s)) or 100Hz elicited short-term potentiation (STP) in DDG, unlike in the IDG, where LTP could be recorded for at least 4 hours. Whereas low frequency stimulation (LFS) at 1Hz elicited long-lasting LTD (>24h) in the DDG, it had no significant effect on fEPSP profile in the IDG. LFS at 2 Hz elicited short-term depression in DDG and had no effect in IDG. LTP in both IDG and DDG required activation of N-methyl-D-aspartate receptors. Paired-pulse and input-output responses differed in IDG and DDG. Our data suggest that afferent input from the entorhinal cortex generates a different response profile in the dorsal vs. intermediate DG, which may in turn relate to their postulated distinct roles in synaptic information processing and memory formation.
    Neuropharmacology 03/2013; 74. DOI:10.1016/j.neuropharm.2013.02.017 · 4.82 Impact Factor

Publication Stats

3k Citations
559.09 Total Impact Points

Institutions

  • 2004–2014
    • Ruhr-Universität Bochum
      • • Faculty of Medicine
      • • International Graduate School of Neuroscience
      Bochum, North Rhine-Westphalia, Germany
  • 2009
    • International College & Graduate School
      INL, Minnesota, United States
  • 1999–2008
    • Humboldt-Universität zu Berlin
      • Department of Biology
      Berlín, Berlin, Germany
  • 1995–2000
    • Leibniz Institute for Neurobiology
      • • Department of Neurochemistry and Molecular Biology
      • • Department of Neurophysiology
      Magdeburg, Saxony-Anhalt, Germany