A. P. Micolich

University of New South Wales, Kensington, New South Wales, Australia

Are you A. P. Micolich?

Claim your profile

Publications (144)396.9 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantum dots exhibit reproducible conductance fluctuations at low temperatures due to electron quantum interference. The sensitivity of these fluctuations to the underlying disorder potential has only recently been fully realized. We exploit this sensitivity to obtain a novel tool for better understanding the role that background impurities play in the electrical properties of high-mobility AlGaAs/GaAs heterostructures and nanoscale devices. In particular, we report the remarkable ability to first alter the disorder potential in an undoped AlGaAs/GaAs heterostructure by optical illumination and then reset it back to its initial configuration by room temperature thermal cycling in the dark. We attribute this behavior to a mixture of C background impurities acting as shallow acceptors and deep trapping by Si impurities. This alter and reset capability, not possible in modulation-doped heterostructures, offers an exciting route to studying how scattering from even small densities of charged impurities influences the properties of nanoscale semiconductor devices.
    08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Triethylsilylethynyl anthradithiophene (TESADT) holds considerable promise for organic transistor applications due to the high electrical mobilities attained by post-deposition crystallization using solvent vapour annealing. We have studied thermal annealing as an alternative route to post-deposition crystallization of TESADT films. Thermal annealing initially appears promising, producing mm-sized crystal domains, but poor electrical performance is obtained, which we attribute to a combination of crack formation and potentially also structural transition during the anneal process. We also find that illumination has a significant positive effect on crystallization, possibly due to an optically-induced enhancement in molecular mobility during annealing. This suggests further studies of how solvent exposure, heat, substrate surface properties and particularly light exposure influence the ordering kinetics of TESADT are warranted.
    03/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We fabricated an etched hole quantum dot in a Si-doped (311)A AlGaAs/GaAs heterostructure to study disorder effects via magnetoconductance fluctuations (MCF) at millikelvin temperatures. Recent experiments in electron quantum dots have shown that the MCF are sensitive to the disorder potential created by remote ionized impurities. We utilize this to study the temporal/thermal stability of Si acceptors in p-type AlGaAs/GaAs heterostructures. In particular, we use a surface gate to cause charge migration between Si acceptor sites at T =40 mK, and detect the ensuing changes in the disorder potential using the MCF. We show that Si acceptors are metastable at T =40 mK and that raising the device to a temperature T =4.2 K and returning to T =40 mK is sufficient to produce complete decorrelation of the MCF. The same decorrelation occurs at T ̃165 K for electron quantum dots; by comparing with the known trap energy for Si DX centers, we estimate that the shallow acceptor traps in our heterostructures have an activation energy EÃ3 meV. Our method can be used to study charge noise and dopant stability towards optimization of semiconductor materials and devices.
    03/2014; 89(15).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena due to their charge stability and robust electronic properties after thermal cycling. However these devices require a large top-gate which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here we demonstrate rf reflectometry is possible in an undoped SET.
    Applied Physics Letters 12/2013; 104(1). · 3.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We fabricated an etched hole quantum dot in a Si-doped (311)A AlGaAs/GaAs heterostructure to study disorder effects via magnetoconductance fluctuations (MCF) at millikelvin temperatures. Recent experiments in electron quantum dots have shown that the MCF is sensitive to the disorder potential created by remote ionised impurities. We utilize this to study the temporal/thermal stability of Si acceptors in p-type AlGaAs/GaAs heterostructures. In particular, we use a surface gate to cause charge migration between Si acceptor sites at T = 40 mK, and detect the ensuing changes in the disorder potential using the MCF. We show that Si acceptors are metastable at T = 40 mK and that raising the device to a temperature T = 4.2 K and returning to T = 40 mK is sufficient to produce complete decorrelation of the MCF. The same decorrelation occurs at T ~ 165 K for electron quantum dots; by comparing with the known trap energy for Si DX centers, we estimate that the shallow acceptor traps in our heterostructures have an activation energy EA ~ 3 meV. Our method can be used to study charge noise and dopant stability towards optimisation of semiconductor materials and devices.
    12/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a study of transport blockade features in a quantum dot single-electron transistor, based on an undoped AlGaAs/GaAs heterostructure. We observe suppression of transport through the ground state of the dot, as well as negative differential conductance at finite source-drain bias. The temperature and magnetic field dependences of these features indicate the couplings between the leads and the quantum dot states are suppressed. We attribute this to two possible mechanisms: spin effects which determine whether a particular charge transition is allowed based on the change in total spin, and the interference effects which arise from coherent tunnelling of electrons in the quantum dot.
    Journal of Physics Condensed Matter 11/2013; 25(50):505302. · 2.22 Impact Factor
  • Adam Micolich
    [Show abstract] [Hide abstract]
    ABSTRACT: The role that quasi-bound spins play in the '0.7 anomaly' is controversial. One study suggests that two or more quasi-bound spins may be involved; another advocates that the 0.7 anomaly is a density-of-states effect, needing neither a quasi-bound spin nor spontaneous spin polarization.
    Nature Physics 09/2013; 9(9):530-531. · 19.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We compare the electronic characteristics of nanowire field-effect transistors made using single pure wurtzite and pure zincblende InAs nanowires with nominally identical diameter. We compare the transfer characteristics and field-effect mobility versus temperature for these devices to better understand how differences in InAs phase govern the electronic properties of nanowire transistors.
    physica status solidi (RRL) - Rapid Research Letters 06/2013; 7(10). · 2.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have measured the zero bias peak in differential conductance in a hole quantum dot. We have scaled the experimental data with applied bias and compared to real time renormalization group calculations of the differential conductance as a function of source-drain bias in the limit of zero temperature and at finite temperatures. The experimental data show deviations from the T=0 calculations at low bias, but are in very good agreement with the finite T calculations. The Kondo temperature T_K extracted from the data using T=0 calculations, and from the peak width at 2/3 maximum, is significantly higher than that obtained from finite T calculations.
    Physical review. B, Condensed matter 05/2013; 87(20). · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the 1950s, materials scientists have pursued the fabrication of solid-state heterostructure (HS) devices of sufficient purity to replicate electron interference effects originally observed in vacuum. The ultimate goal of HS engineering is to create a semiconductor ``billiard table'' in which electrons travel ballistically in a 2-D plane---that is, with scattering events minimized such that the electron's mean free path exceeds the device size. For the past two decades, the modulation-doped (MD) HS architecture has yielded devices supporting very high electron mobilities. In this architecture, ionized dopants are spatially removed from the plane of the electrons, such that their influence on electron trajectories is felt through presumably negligible small-angle scattering events. However, we observe that thermally induced charge redistribution in the doped layers of AlGaAs/GaAs and GaInAs/InP MD heterostructures significantly alters electron transport dynamics as measured by magnetoconductance fluctuations. This result demonstrates that small-angle scattering plays a far larger role than expected in influencing conduction properties.
    03/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transport properties of quantum devices on modulation-doped AlGaAs/GaAs heterostructures change after thermal cycling above ˜130 K due to charge redistribution in the modulation doping layer. This is particularly evident in a quantum dot's magnetoconductance fluctuations (MCF) which provide a sensitive fingerprint of electron trajectories through the dot. We show that the MCF become reproducible with high-fidelity after thermal cycling to 300 K in quantum dots made using AlGaAs/GaAs heterostructures without modulation doping. This is achieved by populating the dot electrostatically using a Heterostructure Insulated Gate Field Effect Transistor (HIGFET) architecture. Our result demonstrates ionized impurity scattering has a measurable effect on transport in quantum dots, even in the ballistic transport regime. It highlights the potential for HIGFET-based architectures to provide devices with significantly reduced small-angle scattering at equivalent transport mobility, and more thermally robust electrical properties. More broadly, we suggest a quantum dot's MCF may be a useful tool for studying the temporal/thermal stability of disorder in other semiconductor materials.
    03/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The out-of-plane g-factor g_perp for quasi-2D holes in a (100) GaAs heterostructure is studied using a variable width quantum wire. A direct measurement of the Zeeman splitting is performed in a magnetic field applied perpendicular to the 2D plane. We measure an out-of-plane g-factor up to g_perp = 5, which is larger than previous optical studies of g_perp, and is approaching the long predicted but never experimentally veri?ed out-of-plane g-factor of 7.2 for heavy holes.
    Nano Letters 01/2013; · 13.03 Impact Factor
  • Source
    Dataset: savedrecs
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have studied the efficacy of (NH4)2Sx surface passivation on the (311)A GaAs surface. We report XPS studies of simultaneously-grown (311)A and (100) heterostructures showing that the (NH4)2Sx solution removes surface oxide and sulfidizes both surfaces. Passivation is often characterized using photoluminescence measurements, we show that while (NH4)2Sx treatment gives a 40 - 60 x increase in photoluminescence intensity for the (100) surface, an increase of only 2 - 3 x is obtained for the (311)A surface. A corresponding lack of reproducible improvement in the gate hysteresis of (311)A heterostructure transistor devices made with the passivation treatment performed immediately prior to gate deposition is also found. We discuss possible reasons why sulfur passivation is ineffective for (311)A GaAs, and propose alternative strategies for passivation of this surface.
    Journal of Physics Condensed Matter 12/2012; 25(32). · 2.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective components for spintronic applications and are of fundamental interest in the study of electron many-body effects such as the 0.7 × 2e(2)/h anomaly. We report on the dependence of the 1D Landé g-factor g* and 0.7 anomaly on electron density and confinement in QPCs with two different top-gate architectures. We obtain g* values up to 2.8 for the lowest 1D subband, significantly exceeding previous in-plane g-factor values in AlGaAs/GaAs QPCs and approaching that in InGaAs/InP QPCs. We show that g* is highly sensitive to confinement potential, particularly for the lowest 1D subband. This suggests careful management of the QPC's confinement potential may enable the high g* desirable for spintronic applications without resorting to narrow-gap materials such as InAs or InSb. The 0.7 anomaly and zero-bias peak are also highly sensitive to confining potential, explaining the conflicting density dependencies of the 0.7 anomaly in the literature.
    Nano Letters 07/2012; 12(9):4495-502. · 13.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gate instability/hysteresis in modulation-doped p-type AlGaAs/GaAs heterostructures impedes the development of nanoscale hole devices, which are of interest for topics from quantum computing to novel spin physics. We present an extended study conducted using custom-grown, matched modulation-doped n-type and p-type heterostructures, with/without insulated gates, aimed at understanding the origin of the hysteresis. We show the hysteresis is not due to the inherent `leakiness' of gates on p-type heterostructures, as commonly believed. Instead, hysteresis arises from a combination of GaAs surface-state trapping and charge migration in the doping layer. Our results provide insights into the physics of Si acceptors in AlGaAs/GaAs heterostructures, including widely-debated acceptor complexes such as Si-X. We propose methods for mitigating the gate hysteresis, including poisoning the modulation-doping layer with deep-trapping centers (e.g., by co-doping with transition metal species), and replacing the Schottky gates with degenerately-doped semiconductor gates to screen the conducting channel from GaAs surface-states.
    Physical review. B, Condensed matter 07/2012; 86(16). · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Semiconductor billiards are often considered as ideal systems for studying dynamical chaos in the quantum mechanical limit. In the traditional picture, once the electron's mean free path, as determined by the mobility, becomes larger than the device, disorder is negligible and electron trajectories are shaped by specular reflection from the billiard walls alone. Experimental insight into the electron dynamics is normally obtained by magnetoconductance measurements. A number of recent experimental studies have shown these measurements to be largely independent of the billiards exact shape, and highly dependent on sample-to-sample variations in disorder. In this paper, we discuss these more recent findings within the full historical context of work on semiconductor billiards, and offer strong evidence that small-angle scattering at the sub-100 nm length-scale dominates transport in these devices, with important implications for the role these devices can play for experimental tests of ideas in quantum chaos.
    Fortschritte der Physik 04/2012; 61(2-3). · 0.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Disorder increasingly affects performance as electronic devices are reduced in size. The ionized dopants used to populate a device with electrons are particularly problematic, leading to unpredictable changes in the behavior of devices such as quantum dots each time they are cooled for use. We show that a quantum dot can be used as a highly sensitive probe of changes in disorder potential, and that by removing the ionized dopants and populating the dot electrostatically, its electronic properties become reproducible with high fidelity after thermal cycling to room temperature. Our work demonstrates that the disorder potential has a significant, perhaps even dominant, influence on the electron dynamics, with important implications for `ballistic' transport in quantum dots.
    Physical Review Letters 03/2012; 108(19). · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have fabricated AlGaAs/GaAs heterostructure devices in which the conduction channel can be populated with either electrons or holes simply by changing the polarity of a gate bias. The heterostructures are entirely undoped, and carriers are, instead, induced electrostatically. We use these devices to perform a direct comparison of the scattering mechanisms of two-dimensional electrons (μpeak = 4 × 106 cm2/Vs) and holes (μpeak = 0.8 × 106 cm2/Vs) in the same conduction channel with nominally identical disorder potentials. We find significant discrepancies between electron and hole scattering, with the hole mobility being considerably lower than expected from simple theory.
    Applied Physics Letters 01/2012; 100(5). · 3.79 Impact Factor

Publication Stats

575 Citations
396.90 Total Impact Points

Institutions

  • 1997–2014
    • University of New South Wales
      • School of Physics
      Kensington, New South Wales, Australia
  • 2001–2006
    • University of Oregon
      • Department of Physics
      Eugene, OR, United States
  • 1998–2001
    • University of Nottingham
      • School of Physics and Astronomy
      Nottingham, ENG, United Kingdom