T H McNeill

University of Southern California, Los Angeles, California, United States

Are you T H McNeill?

Claim your profile

Publications (70)298.48 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Axonal regeneration after injury to the CNS is hampered by myelin-derived inhibitors, such as Nogo-A. Natural products, such as green tea, which are neuroprotective and safe for long-term therapy, would complement ongoing various pharmacological approaches. In this study, using nerve growth factor-differentiated neuronal-like Neuroscreen-1 cells, we show that extremely low concentrations of unfractionated green tea polyphenol mixture (GTPP) and its active ingredient, epigallocatechin-3-gallate (EGCG), prevent both the neurite outgrowth-inhibiting activity and growth cone-collapsing activity of Nogo-66 (C-terminal domain of Nogo-A). Furthermore, a synergistic interaction was observed among GTPP constituents. This preventive effect was dependent on 67-kDa laminin receptor (67LR) to which EGCG binds with high affinity. The antioxidants N-acetylcysteine and cell-permeable catalase abolished this preventive effect of GTPP and EGCG, suggesting the involvement of sublethal levels of H2O2 in this process. Accordingly, exogenous sublethal concentrations of H2O2, added as a bolus dose (5 μM) or more effectively through a steady-state generation (1-2 μM), mimicked GTPP in counteracting the action of Nogo-66. Exogenous H2O2 mediated this action by bypassing the requirement of 67LR. Taken together, these results show for the first time that GTPP and EGCG, acting through 67LR and elevating intracellular sublethal levels of H2O2, inhibit the antineuritogenic action of Nogo-A.This article is protected by copyright. All rights reserved.
    Journal of Neurochemistry 10/2014; 132(1). DOI:10.1111/jnc.12964 · 4.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Delivery of optimal amounts of brain-derived neurotrophic factor (BDNF) to regions of the brain affected by neurodegenerative diseases is a daunting task. Using natural products with neuroprotective properties, such as green tea polyphenols, would be a highly useful complementary approach for inexpensive long-term treatment of these diseases. In this study, we used PC12(TrkB) cells which ectopically express TrkB, a high affinity receptor for BDNF. They differentiate and induce neurite outgrowth in response to BDNF. Using this model, we show for the first time that treatment with extremely low concentrations (<0.1 μ g/ml) of unfractionated green tea polyphenols (GTPP) and low concentrations (<0.5 μ M) of their active ingredient, epigallocatechin-3-gallate (EGCG), potentiated the neuritogenic ability of a low concentration (2 ng/ml) of BDNF. A synergistic interaction was observed between GTPP constituents, where epigallocatechin and epicatechin, both individually lacking this activity, promoted the action of EGCG. GTPP-induced potentiation of BDNF action required the cell-surface associated 67kDa laminin receptor (67LR) to which EGCG binds with high affinity. A cell-permeable catalase abolished GTPP/EGCG-induced potentiation of BDNF action, suggesting the possible involvement of H2O2 in the potentiation. Consistently, exogenous sublethal concentrations of H2O2, added as a bolus dose (5 μ M) or more effectively through a steady-state generation (1 μ M), potentiated BDNF action. Collectively, these results suggest that EGCG, dependent on 67LR and H2O2, potentiates the neuritogenic action of BDNF. Intriguingly, this effect requires only submicromolar concentrations of EGCG. This is significant as extremely low concentrations of polyphenols are believed to reach the brain after drinking green tea.
    Biochemical and Biophysical Research Communications 02/2014; 445(1). DOI:10.1016/j.bbrc.2014.01.166 · 2.28 Impact Factor
  • Kelly Kent, Peter Deng, Thomas H McNeill
    [Show abstract] [Hide abstract]
    ABSTRACT: The sensorimotor striatum is critical for the acquisition and consolidation of skilled learning-related motor sequences. Excitatory corticostriatal synapses undergo neuroplastic changes that impact signal transmission efficacy. Modification of N-methyl D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit composition and phosphorylation is critical for bidirectional experience-driven plasticity observed at these synapses. Metaplastic regulation of the ratio of NR2A to NR2B subunits of the NMDA receptor controls the threshold for the induction of subsequent plasticity. However, little is known about how repeated practice effects the differential regulation of glutamate receptors during the acquisition of a unilateral motor skill. Using immunoblot analysis, we assessed changes in NMDA and AMPA receptors during the associative stage of skill acquisition in synaptoneurosome preparations from the rat sensorimotor striatum. We found that the NR2A/B subunit ratio in the striatum contralateral to the trained limb decreased during skill acquisition optimizing the threshold for inducing subsequent synaptic plasticity during learning of the lateralized motor skill. In contrast, there was a significant increase in the NR2A/B subunit ratio in the ipsilateral striatum making the induction of subsequent plasticity more difficult. In addition, there was a selective decrease in AMPAR phosphorylation levels at serine site 831 but not 845 on the GluR1 subunit ipsilaterally with a trend toward a decrease contralaterally. These findings suggest that the successful acquisition of a lateralized motor skill necessitates the integration of motor programs in both striata, each of which reflects unique changes in the NR2A/B ratio that modulate the different task demands on the associated limb.
    Brain research 04/2013; 1517. DOI:10.1016/j.brainres.2013.04.021 · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The protein kinase C (PKC) family of isoenzymes may be a crucial player in transducing H2O2-induced signaling in a wide variety of physiological and pathophysiological processes. PKCs contain unique structural features that make them highly susceptible to oxidative modification. Depending on the site of oxidation and the extent to which it is modified, PKC can be either activated or inactivated by H2O2. The N-terminal regulatory domain contains zinc-binding, cysteine-rich motifs that are readily oxidized by H2O2. When oxidized, the autoinhibitory function of the regulatory domain is compromised, and as a result, PKC is activated in a lipid cofactor-independent manner. The C-terminal catalytic domain contains several reactive cysteine residues, which when oxidized with a higher concentration of H2O2 leads to an inactivation of PKC. Here, we describe the methods used to induce oxidative modification of purified PKC isoenzymes by H2O2 and the methods to assess the extent of this modification. Protocols are given for isolating oxidatively activated PKC isoenzymes from cells treated with H2O2. Furthermore, we describe the methods used to assess indirect regulation of PKC isoenzymes by determining their cytosol to membrane or mitochondrial translocation and tyrosine phosphorylation of PKCδ in response to sublethal levels of H2O2. Finally, as an example, we describe the methods used to demonstrate the role of H2O2-mediated cell signaling of PKCɛ in green tea polyphenol-induced preconditioning against neuronal cell death caused by oxygen-glucose deprivation and reoxygenation, an in vitro model for cerebral ischemic/reperfusion injury.
    Methods in enzymology 01/2013; 528C:79-98. DOI:10.1016/B978-0-12-405881-1.00005-7 · 2.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As the development of synthetic drugs for the prevention of stroke has proven challenging, utilization of natural products capable of preconditioning neuronal cells against ischemia-induced cell death would be a highly useful complementary approach. In this study using an oxygen-glucose deprivation and reoxygenation (OGD/R) model in PC12 cells, we show that 2-day pretreatment with green tea polyphenols (GTPP) and their active ingredient, epigallocatechin-3-gallate (EGCG), protects cells from subsequent OGD/R-induced cell death. A synergistic interaction was observed between GTPP constituents, with unfractionated GTPP more potently preconditioning cells than EGCG. GTPP-induced preconditioning required the 67-kDa laminin receptor (67LR), to which EGCG binds with high affinity. 67LR also mediated the generation of reactive oxygen species (ROS) via activation of NADPH oxidase. An exogenous ROS-generating system bypassed 67LR to induce preconditioning, suggesting that sublethal levels of ROS are indeed an important mediator in GTPP-induced preconditioning. This role for ROS was further supported by the fact that antioxidants blocked GTPP-induced preconditioning. Additionally, ROS induced an activation and translocation of protein kinase C (PKC), particularly PKCε from the cytosol to the membrane/mitochondria, which was also blocked by antioxidants. The crucial role of PKC in GTPP-induced preconditioning was supported by use of its specific inhibitors. Preconditioning was increased by conditional overexpression of PKCε and decreased by its knock-out with siRNA. Collectively, these results suggest that GTPP stimulates 67LR and thereby induces NADPH oxidase-dependent generation of ROS, which in turn induces activation of PKC, particularly prosurvival isoenzyme PKCε, resulting in preconditioning against cell death induced by OGD/R.
    Journal of Biological Chemistry 08/2012; 287(41):34694-708. DOI:10.1074/jbc.M112.356899 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exogenously administered nerve growth factor (NGF) repairs injured axons, but it does not cross the blood-brain barrier. Thus, agents that could potentiate the neuritogenic ability of endogenous NGF would be of great utility in treating neurological injuries. Using the PC12 cell model, we show here that unfractionated green tea polyphenols (GTPP) at low concentrations (0.1 μg/ml) potentiate the ability of low concentrations of NGF (2 ng/ml) to induce neuritogenesis at a level comparable to that induced by optimally high concentrations of NGF (50 ng/ml) alone. In our experiments, GTPP by itself did not induce neuritogenesis or increase immunofluorescent staining for β-tubulin III; however, it increased expression of mRNA and proteins for the neuronal markers neurofilament-L and GAP-43. Among the polyphenols present in GTPP, epigallocatechin-3-gallate (EGCG) alone appreciably potentiated NGF-induced neurite outgrowth. Although other polyphenols present in GTPP, particularly epigallocatechin and epicatechin, lack this activity, they synergistically promoted this action of EGCG. GTPP also induced an activation of extracellular signal-regulated kinases (ERKs). PD98059, an inhibitor of the ERK pathway, blocked the expression of GAP-43. K252a, an inhibitor of TrkA-associated tyrosine kinase, partially blocked the expression of these genes and ERK activation. Antioxidants, catalase (cell-permeable form), and N-acetylcysteine (both L and D-forms) inhibited these events and abolished the GTPP potentiation of NGF-induced neuritogenesis. Taken together, these results show for the first time that GTPP potentiates NGF-induced neuritogenesis, likely through the involvement of sublethal levels of reactive oxygen species, and suggest that unfractionated GTPP is more effective in this respect than its fractionated polyphenols.
    Journal of Neuroscience Research 12/2010; 88(16):3644-55. DOI:10.1002/jnr.22519 · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we have used the PC12 cell model to elucidate the mechanisms by which sublethal doses of oxidants induce neuritogenesis. The xanthine/xanthine oxidase (X/XO) system was used for the steady state generation of superoxide, and CoCl(2) was used as a representative transition metal redox catalyst. Upon treatment of purified protein kinase C (PKC) with these oxidants, there was an increase in its cofactor-independent activation. Redox-active cobalt competed with the redoxinert zinc present in the zinc-thiolates of the PKC regulatory domain and induced the oxidation of these cysteine-rich regions. Both CoCl(2) and X/XO induced neurite outgrowth in PC12 cells, as determined by an overexpression of neuronal marker genes. Furthermore, these oxidants induced a translocation of PKC from cytosol to membrane and subsequent conversion of PKC to a cofactor-independent form. Isoenzyme-specific PKC inhibitors demonstrated that PKCepsilon plays a crucial role in neuritogenesis. Moreover, oxidant-induced neurite outgrowth was increased with a conditional overexpression of PKCepsilon and decreased with its knock-out by small interfering RNA. Parallel with PKC activation, an increase in phosphorylation of the growth-associated neuronal protein GAP-43 at Ser(41) was observed. Additionally, there was a sustained activation of extracellular signal-regulated kinases 1 and 2, which was correlated with activating phosphorylation (Ser(133)) of cAMP-responsive element-binding protein. All of these signaling events that are causally linked to neuritogenesis were blocked by antioxidant N-acetylcysteine (both L and D-forms) and by a variety of PKC-specific inhibitors. Taken together, these results strongly suggest that sublethal doses of oxidants induce neuritogenesis via a direct redox activation of PKCepsilon.
    Journal of Biological Chemistry 06/2008; 283(21):14430-44. DOI:10.1074/jbc.M801519200 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inbred strains of mice differ in their susceptibility to excitotoxin-induced cell death, but the genetic basis of individual variation in differential susceptibility is unknown. Previously, we identified a highly significant quantitative trait locus (QTL) on chromosome 18 that influenced susceptibility to kainic acid-induced cell death (Sicd1). Comparison of susceptibility to seizure-induced cell death between reciprocal congenic lines for Sicd1 and parental background mice indicates that genes influencing this trait were captured in both strains. Two positional gene candidates, Galr1 and Mbp, map to 55 cM, where the Sicd1 QTL had been previously mapped. Thus, this study was undertaken to determine if Galr1 and/or Mbp could be considered as candidate genes. Genomic sequence comparison of these two functional candidate genes from the C57BL/6J (resistant at Sicd1) and the FVB/NJ (susceptible at Sicd1) strains showed no single-nucleotide polymorphisms. However, expression studies confirmed that Galr1 shows significant differential expression in the congenic and parental inbred strains. Galr1 expression was downregulated in the hippocampus of C57BL/6J mice and FVB.B6-Sicd1 congenic mice when compared with FVB/NJ or B6.FVB-Sicd1 congenic mice. A survey of Galr1 expression among other inbred strains showed a significant effect such that 'susceptible' strains showed a reduction in Galr1 expression as compared with 'resistant' strains. In contrast, no differences in Mbp expression were observed. In summary, these results suggest that differential expression of Galr1 may contribute to the differences in susceptibility to seizure-induced cell death between cell death-resistant and cell death-susceptible strains.
    Genes Brain and Behavior 04/2008; 7(5):587-98. DOI:10.1111/j.1601-183X.2008.00395.x · 3.51 Impact Factor
  • Source
    E J H Davis, C Coyne, T H McNeill
    [Show abstract] [Hide abstract]
    ABSTRACT: Motor cortex lesions in rats partially denervate the striatum, producing behavioral deficits and inducing reactive neuroplasticity. Plastic responses include changes in growth-associated protein marker expression and anatomical restructuring. Corticostriatal plasticity is dependent on dopamine at the striatal target, where D1 receptor signaling reinforces behaviorally relevant neural activity. To determine whether striatal dopamine D1 receptor signaling is important for the growth-associated protein responses and behavioral recovery that follow unilateral motor cortex aspiration, the dopamine D1 receptor antagonist SCH23390 was intrastriatally infused in cortically lesioned animals. After a cortical aspiration lesion in Long Evans rats, the growth-associated proteins SCG10 and GAP-43 were upregulated in the cortex contralateral to the lesion at 30 days post-lesion. However, continuous unilateral intrastriatal infusion of SCH23390 prevented this aspiration-induced upregulation. Furthermore, lesioned rats demonstrated spontaneous sensorimotor improvement, in terms of limb-use symmetry, about 1 month post-lesion. This improvement was prevented with chronic intrastriatal SCH23390 infusion. The D1 receptor influence may be important to normalize corticostriatal activity (and observable behavior), either in a long-term manner or temporarily until other more permanent means of synaptic regulation, such as sprouting or synaptogenesis, may be implemented.
    Neuroscience 06/2007; 146(2):784-91. DOI:10.1016/j.neuroscience.2007.01.039 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Investigation of the elements underlying synapse replacement after brain injury is essential for predicting the neural compensation that can be achieved after various types of damage. The growth-associated proteins superior cervical ganglion-10 and growth-associated protein-43 have previously been linked with structural changes in the corticostriatal system in response to unilateral deafferentation. To examine the regulation of this response, unilateral cortical aspiration lesion was carried out in combination with ipsilateral 6-hydroxydopamine lesion of the substantia nigra, and the time course of the contralateral cortical molecular response was followed. Unilateral cortical aspiration lesion in rats corresponds with an upregulation of superior cervical ganglion-10 mRNA at 3 and 10 days post-lesion, and protein, sustained from three to at least 27 days following lesion. With the addition of substantia nigra lesion, the response shifts to an upregulation of growth-associated protein-43 mRNA at 3 and 10 days post-lesion, and protein after 10 days. Nigral lesion alone does not alter contralateral expression of either gene. Likewise, motor function assessment using the rotorod test revealed no significant long-term deficits in animals that sustained only nigrostriatal damage, but cortical lesion was associated with a temporary deficit which was sustained when nigrostriatal input was also removed. Growth-associated protein-43 and superior cervical ganglion-10, two presynaptic genes that are postulated to play roles in lesion-induced sprouting, are differentially upregulated in corticostriatal neurons after cortical versus combined cortical/nigral lesions. The shift in contralateral gene response from superior cervical ganglion-10 to growth-associated protein-43 upregulation and associated behavioral deficit following combined cortical and nigral denervation suggest that nigrostriatal afferents regulate cortical lesion-induced gene expression and ultimate functional outcome.
    Neuroscience 02/2005; 135(4):1231-9. DOI:10.1016/j.neuroscience.2005.07.017 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Defining the selective pattern of synapse replacement that occurs in different areas of the damaged brain is essential for predicting the limits of functional compensation that can be achieved after various types of brain injury. Here we describe the time course of dendritic reorganization, spine loss and recovery, and synapse replacement in the striatum following a unilateral cortex ablation. We found that the time course for the transient loss and recovery of dendritic spines on medium spiny I (MSI) neurons, the primary postsynaptic target for corticostriatal axons, paralleled the time course for the removal of degenerating axon terminals from the neuropil and the formation of new synapses on MSI neurons. Reinnervation of the deafferented striatum occurred chiefly by axon terminals that formed asymmetric synapses with dendritic spines of MSI neurons, and the mean density of asymmetric synapses recovered to 86% of the sham-operated rat value by 30 days postlesion. In addition, the synaptic circuitry of the reconstructed striatum was characterized by an increase in the number of multiple synaptic boutons (MSBs), i.e., presynaptic axon terminals that make contact with more than one dendritic spine. Whether the postsynaptic contacts of MSBs are formed with the dendritic spines of the same or a different parent dendrite in the striatum is unknown. Nevertheless, these data suggest that the formation of MSBs is an essential part of the compensatory response to the loss of input from the ipsilateral cortex following the aspiration lesion and may serve to modulate activity-dependent adaptive changes in the reconstructed striatum that can lead to functional recovery.
    The Journal of Comparative Neurology 12/2003; 467(1):32-43. DOI:10.1002/cne.10907 · 3.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ultrastructural changes within the ipsilateral dorsolateral striatum were investigated 1 month following a unilateral ablation of the rat frontal cortex (CTX), removing corticostriatal input, or injection of the neurotoxin, 6-hydroxydopamine (6-OHDA), into the substantia nigra pars compacta, removing nigrostriatal input. In addition, a combined ipsilateral cortical and 6-OHDA lesion (CTX/6-OHDA) was carried out. We find that following a CTX, 6-OHDA, or CTX/6-OHDA lesion, there was a significant decrease in the density of striatal nerve terminal glutamate immunoreactivity compared to the control group. There was also a significant increase in all three lesion groups in the mean percentage of asymmetrical synapses associated with a perforated postsynaptic density. There was a large increase within the CTX/6-OHDA-lesioned group and a smaller but still significant increase in the CTX-lesioned group in the percentage of terminals or boutons with multiple synaptic contacts (i.e., multiple synaptic boutons, MSBs), compared to either the 6-OHDA or the control group. There was no change in any of these measurements within the contralateral striatum. There was a significant decrease in the number of apomorphine-induced contralateral rotations in the CTX/6-OHDA versus the 6-OHDA-lesioned group. Animals receiving just the single CTX or 6-OHDA lesion recovered in motor function compared to the control group as measured by the Rotorod test, while the CTX/6-ODA-lesioned group recovered to less than 50% of the control level. The data suggest that following a CTX and/or 6-OHDA lesion, there is an increase in striatal glutamatergic function. The large increase in the percentage of MSBs in the combined lesion group suggests that dopamine or other factors released by the dopamine terminals assist in regulating synapse formation.
    Experimental Neurology 10/2000; 165(1):191-206. DOI:10.1006/exnr.2000.7467 · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Annotation Technology is a systematized set of recommendations for design of successful advanced annotation software covering the architectural, functional and user-interface aspects. It is grounded in a careful examination of 17 existing systems accompanied by our own empirical study of annotation types, applications and desired functionality. To validate the recommendations of Annotation Technology, we have also developed Annotator, a system for making on-line annotations on arbitrary hypertext documents. Annotator offers some capabilities unavailable in existing systems. It has a proxy-based architecture for annotating documents over the web and sorting the comments in an annotation database.
    International Journal of Human-Computer Studies 04/1999; 50(4-50):329-362. DOI:10.1006/ijhc.1999.0247 · 1.17 Impact Factor
  • Source
    T H McNeill, N Mori, H W Cheng
    [Show abstract] [Hide abstract]
    ABSTRACT: Synapse replacement after brain injury has been widely documented by anatomical studies in various parts of both the developing and adult nervous system. However, the molecular events that define the specificity of the empirically derived rules of reactive synaptogenesis in different regions of the adult brain remain unclear. In this study we examined the differential regulation of the lesion-induced response of the two growth-associated proteins, superior cervical ganglia-10 and growth-associated protein-43, after unilateral cortex ablation, and determined a hierarchical order for the lesion response from remaining afferent projection neurons originating from the contralateral cortex, ipsilateral thalamus and substantia nigra. We report that in response to unilateral cortex ablation both messenger RNA, by northern blot, and protein, by western blot, for superior cervical ganglia-10 but not growth-associated protein-43 was increased in the homologous area of the contralateral cortex but not the ipsilateral thalamus or substantia nigra. In addition, the specificity of the superior cervical ganglia-10 response, assessed by combined in situ hybridization and retrograde FluoroGold labeling of striatal afferent neurons, found that superior cervical ganglia-10 messenger RNA was increased prominently in layer V pyramidal neurons of the contralateral corticostriatal pathway but was unchanged in afferent projection neurons from the thalamus and substantia nigra. Furthermore, the increase in both superior cervical ganglia-10 messenger RNA and protein seen at three days postlesion in contralateral corticostriatal neurons coincides in time with the initiation of neurite outgrowth in the deafferented striatum by contralateral corticostriatal axons described in our previous ultrastructural study. However, if cortical input to the striatum was removed bilaterally the lesion-induced response for superior cervical ganglia-10 messenger RNA shifted secondarily to thalamostriatal neurons in the ipsilateral thalamus. These data provide evidence that superior cervical ganglia-10 and growth-associated protein-43 are differentially regulated in neurons of the contralateral corticostriatal pathway in response to unilateral cortex ablation and suggests that superior cervical ganglia-10 plays a role in the regulation of neurite outgrowth in the adult striatum after brain injury. However, the specific role that superior cervical ganglia-10 may play in reactive synaptogenesis remains unclear. In addition, our data suggest that a hierarchical order exists for the reinnervation of deafferented striatal neurons after unilateral cortex ablation with preference given to homologous axons from the contralateral cortex.
    Neuroscience 02/1999; 90(4):1349-60. DOI:10.1016/S0306-4522(98)00482-5 · 3.33 Impact Factor
  • Source
    H W Cheng, Jiang Tong, Thomas H McNeill
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic replacement in rat striatum following a unilateral cortical lesion was investigated using electron microscopy and the anterograde tracer, biotinylated dextrin amine (BDA). In the deafferented striatum evidence of axon sprouting and synapse replacement was seen at 20 days after the lesion and most newly-formed axon terminals were labeled with BDA injected previously into the contralateral cortex. In addition, BDA-labeled fibers from the contralateral cortex formed multiple asymmetric axospinous synapses with deafferented striatal neurons, a morphological feature rarely seen in unlesioned rats. These data suggest that in response to a unilateral cortex lesion axons from the contralateral cortex sprout and reinnervated the deafferented striatal neurons and that reinnervation by 'like' afferents maybe crucial for the establishment of functional recovery after the unilateral cortex lesion.
    Neuroscience Letters 02/1998; 242(2):69-72. DOI:10.1016/S0304-3940(98)00050-0 · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The VGF gene encodes a neuronal secretory-peptide precursor that is rapidly induced by neurotrophic growth factors and by depolarization in vitro. VGF expression in the animal peaks during critical periods in the developing peripheral and central nervous systems. To gain insight into the possible functions and regulation of VGF in vivo, we have used in situ hybridization to examine the regulation of VGF messenger RNA by experimental manipulations, and have found it to be regulated in the CNS by paradigms that affect electrical activity and by lesion. Inhibition of retinal electrical activity during the critical period of visual development rapidly repressed VGF messenger RNA in the dorsal lateral geniculate nucleus of the thalamus. In the adult, kainate-induced seizures transiently induced VGF messenger RNA in neurons of the dentate gyrus, hippocampus, and cerebral cortex within hours. Cortical lesion strongly induced VGF messenger RNA in ipsilateral cortex within hours, and strongly repressed expression in ipsilateral striatum. Ten days postlesion there was a delayed induction of VGF messenger RNA in a portion of deafferented striatum where compensatory cortical sprouting has been detected. Expression of the neuronal secretory-peptide precursor VGF is therefore modulated in vivo by monocular deprivation, seizure, and cortical lesion, paradigms which lead to neurotrophin induction, synaptic remodeling and axonal sprouting.
    Neuroscience 02/1998; 82(1):7-19. DOI:10.1016/S0306-4522(97)00280-7 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study evaluates the time course of expression of three astrocytic mRNAs, glial fibrillary acidic protein (GFAP), apolipoprotein E (ApoE), and clusterin, in the rat striatum (ST) following a unilateral lesion of either the cortex (CX) or the substantia nigra (SN), using Northern blot and in situ hybridization analyses. We found that while there was a time-dependent increase in astrocytic GFAP mRNA in the deafferented ST following both the CX and the SN lesions, the time course of the response was different between the two lesion paradigms. Specifically, the increase in GFAP mRNA in striatal astrocytes after the SN lesion was rapid and transient returning to control levels by 10 days postlesion, while the response was long lasting and remained increased until at least 27 days after the CX lesion. In addition, the mRNA response for both ApoE and clusterin was differentially regulated in response to the two lesions. Specifically, both clusterin and ApoE mRNAs were rapidly increased in the ST following the CX lesion while both mRNAs remained unchanged following the SN lesion. Data from this study extend information derived from previous investigations on the multifunctional role of astrocytes in the response to brain injury. Specifically, our data support the notion that while the time course of the GFAP response in striatal astrocytes may vary between lesion paradigms, the upregulation of GFAP is part of a generalized response of reactive astrocytes to diverse brain injuries. By comparison, upregulation of the mRNAs for the lipoproteins clusterin and ApoE are lesion specific and may play a role in the transport of recycled myelin lipids from dying axons to actively growing axons and dendrites in reactive synaptogenesis.
    Experimental Neurology 02/1998; 149(1):87-96. DOI:10.1006/exnr.1997.6679 · 4.62 Impact Factor
  • H W Cheng, Tong Jiang, Nozum Mori, Thomas H. McNeill
    [Show abstract] [Hide abstract]
    ABSTRACT: Stathmin (p19) is developmentally regulated as a neural-enriched phosphoprotein associated with neurite outgrowth and synaptic formation during cell proliferation and differentiation, and remains highly abundant in adult rat brain. Whether stathmin is involved in injury-induced reactive synaptogenesis in adult rat was examined in this study. Following unilateral cortical lesion, a significant increase in stathmin mRNA expression was found in the cells of contralateral homotypic cortex and in the subventricular zone of the lateral ventricle. This increase coincided in time with the corticostriatal axon sprouting and synaptic remodeling previously found in denervated striatum. Our data suggest that stathmin plays an important role in regulation of reactive synaptogenesis in adult brain.
    Neuroreport 01/1998; 8(17):3691-5. DOI:10.1097/00001756-199712010-00007 · 1.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Golgi-Cox method and morphometric analyses were used to study the plasticity of striatal medium spiny I neurons in 6-month-old C57BL/6N mice after unilateral or bilateral lesion of the cerebral cortex or combined lesions of the ipsilateral cerebral cortex and intralaminar thalamus. In adult mouse, unilateral lesions of the cerebral cortex did not result in a net gain or loss of linear dendritic length in a randomly selected population of striatal medium spiny I neurons. In addition, there was a well-defined time course of striatal spine loss and replacement occurring after a unilateral cortical lesion. By day 3 postlesion the average 20-microm dendritic segment had lost 30% of the unlesioned control spine value, reached its nadir, lost 45.5%, at 10 days postlesion, and recovered to 80% of unlesioned control levels by 20 days postlesion. The recovery of spines was blocked by a secondary lesion on the contralateral cortex but not on the ipsilateral intralaminar thalamus. These data suggest that striatal medium spiny I neurons of adult mice have a remarkable capacity for plasticity and reactive synaptogenesis following a decortication. The recovery of spine density is primarily induced by axonal sprouting of survival homologous afferent fibers from the contralateral cortex.
    Experimental Neurology 11/1997; 147(2):287-98. DOI:10.1006/exnr.1997.6618 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging disrupts the expression of synaptic plasticity in many central nervous system (CNS) structures including the striatum. We found age differences in paired-pulse plasticity to persist at excitatory striatal synapses following block of gamma aminobutyric acid (GABA)A and GABA(B) receptors, a property that was independent of the number of afferents activated. High Mg2+/low Ca2+ artificial cerebral spinal fluid (ACSF) reduced release probability and consequently the size of the evoked excitatory post-synaptic potential (EPSP). High Mg2+/low Ca2+ ACSF also increased the expression of paired-pulse facilitation and eliminated the age difference seen previously in normal ACSF. These data suggest that age differences in paired-pulse plasticity reflect an alteration in release probability at excitatory striatal synapses. In support of this hypothesis, we found age differences in another presynaptic form of plasticity referred to as synaptic augmentation. Examination of the synaptic depression that developed during the conditioning tetanus also revealed an age-related increase in synaptic depression. These data indicate that age-related changes in facilitation may be due in part to a reduction in the readily releasable pool of synaptic vesicles. Dendritic structure (spine density and dendritic length) was correlated with short-term synaptic plasticity, but these relationships depended upon the variance associated with age (hierarchical regression). Post-hoc within-age group regressions demonstrated relationship between spine density and paired-pulse plasticity. No other age-specific correlations were found. These findings imply an age-dependent association between altered dendritic morphology and changes in synaptic plasticity.
    Synapse 09/1997; 27(1):57-68. DOI:10.1002/(SICI)1098-2396(199709)27:1<57::AID-SYN6>3.0.CO;2-C · 2.43 Impact Factor

Publication Stats

3k Citations
298.48 Total Impact Points

Institutions

  • 1991–2014
    • University of Southern California
      • • Department of Cell and Neurobiology
      • • Department of Neurology
      • • Keck School of Medicine
      • • Department of Biological Sciences
      Los Angeles, California, United States
  • 2013
    • University of California, Los Angeles
      Los Ángeles, California, United States
  • 2008
    • Keck School of Medicine USC
      Los Ángeles, California, United States
  • 1980–1990
    • University of Rochester
      • Department of Neurology
      Rochester, New York, United States
  • 1988–1989
    • Monroe Community College
      Rochester, New York, United States
    • University Center Rochester
      • Department of Neurology
      Rochester, Minnesota, United States