D V Pozdyshev

Lomonosov Moscow State University, Moskva, Moscow, Russia

Are you D V Pozdyshev?

Claim your profile

Publications (3)10.76 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Plant leaves undergo a sink-source modification of intercellular macromolecular transport during the transition from carbon import to carbon export. After assessing the role of metabolite signaling in gene regulation in Nicotiana tabacum sink and source leaves, we observed increased pectin methylesterase (PME)-mediated methanol generation in immature leaves. Using suppression subtractive hybridization (SSH), we identified a number of genes whose activity changes from sink to source leaves. The most abundant SSH-identified genes appeared to be sensitive to methanol. We hypothesize that tobacco leaf maturation and the sink-source transition are accompanied by a change in mRNA levels of genes that function in methanol-dependent cell signaling.
    Biochemistry (Moscow) 02/2014; 79(2):102-10. DOI:10.1134/S0006297914020035 · 1.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although high level of recombinant protein production can be achieved via transient expression in plant cells, the mechanism by which tolerance to the presence of recombinant protein is acquired remains unclear. Here we show that green fluorescent protein (GFP) encoded by an intron-optimized tobacco mosaic viral vector formed large membraneless GFP bodies called Y-bodies that demonstrated mainly perinuclear localization. The Y-bodies were heterogeneous in size, approaching the size of the cell nucleus. Experiments with extracted GFP and live cell imaging showed that Y-bodies included actively fluorescent, non-aggregated, tightly packed GFP molecules. The plant cells probably formed Y-bodies to exclude the recombinant protein from normal physiological turnover.
    Biochemistry (Moscow) 06/2012; 77(6):603-8. DOI:10.1134/S0006297912060065 · 1.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many plants release airborne volatile compounds in response to wounding due to pathogenic assault. These compounds serve as plant defenses and are involved in plant signaling. Here, we study the effects of pectin methylesterase (PME)-generated methanol release from wounded plants ("emitters") on the defensive reactions of neighboring "receiver" plants. Plant leaf wounding resulted in the synthesis of PME and a spike in methanol released into the air. Gaseous methanol or vapors from wounded PME-transgenic plants induced resistance to the bacterial pathogen Ralstonia solanacearum in the leaves of non-wounded neighboring "receiver" plants. In experiments with different volatile organic compounds, gaseous methanol was the only airborne factor that could induce antibacterial resistance in neighboring plants. In an effort to understand the mechanisms by which methanol stimulates the antibacterial resistance of "receiver" plants, we constructed forward and reverse suppression subtractive hybridization cDNA libraries from Nicotiana benthamiana plants exposed to methanol. We identified multiple methanol-inducible genes (MIGs), most of which are involved in defense or cell-to-cell trafficking. We then isolated the most affected genes for further analysis: β-1,3-glucanase (BG), a previously unidentified gene (MIG-21), and non-cell-autonomous pathway protein (NCAPP). Experiments with Tobacco mosaic virus (TMV) and a vector encoding two tandem copies of green fluorescent protein as a tracer of cell-to-cell movement showed the increased gating capacity of plasmodesmata in the presence of BG, MIG-21, and NCAPP. The increased gating capacity is accompanied by enhanced TMV reproduction in the "receivers". Overall, our data indicate that methanol emitted by a wounded plant acts as a signal that enhances antibacterial resistance and facilitates viral spread in neighboring plants.
    PLoS Pathogens 04/2012; 8(4):e1002640. DOI:10.1371/journal.ppat.1002640 · 8.06 Impact Factor