Are you Saúl Alvarez-Teijeiro?

Claim your profile

Publications (2)10.02 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Compelling evidence indicates that the human ether-à-go-go voltage-gated potassium channels (hEAG1) may represent new valuable membrane therapeutic targets and diagnostic/prognostic biomarkers in various cancers. This study is the first to investigate the expression of hEAG1 potassium channel subunit in both primary tumors and HNSCC-derived cell lines to ascertain its clinical and biological role in tumor progression. Our findings demonstrate that hEAG1 is frequently aberrantly expressed in a high percentage of primary tumors (83 %, 45/54 cases) and HNSCC-derived cell lines (83 %, 10/12 cell lines). hEAG1 expression increased during HNSCC progression and was more frequent in advanced tumors. Strikingly, hEAG1 expression was also detected in a notable proportion (39 %, 17/44 cases) of patient-matched normal adjacent mucosa, whereas no expression was detected in normal epithelia from non-oncologic patients without exposure to tobacco carcinogens. In an attempt to identify the underlying mechanisms of aberrant hEAG1 expression in HNSCC, we found that hEAG1 gene copy gain occurred at a low frequency (15 %, 13/88 cases) in primary tumors but was not observed in early stages of HNSCC tumorigenesis. Furthermore, this study provides original evidence supporting the involvement of histone acetylation (i.e., H3Ac and H4K16Ac activating marks) in the regulation of hEAG1 expression in HNSCC. In addition, functional studies in HNSCC cells further revealed that hEAG1 expression is a biologically relevant feature that promotes cell proliferation and invasion, although independently of its ion-conducting function. Our findings strongly support the notion that hEAG1 may represent a promising candidate as tumor marker and membrane therapeutic target for HNSCC treatment.
    Journal of Molecular Medicine 03/2012; 90(10):1173-84. · 4.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidence indicates that human ether à-go-go-related gene 1 (HERG1) voltage-gated potassium channels could represent new valuable membrane therapeutic targets and diagnostic/prognostic biomarkers in various cancers. This study is the first to investigate the expression pattern of HERG1 potassium channel subunit in both primary tumors and precancerous lesions to establish its clinical and biological role during the development and progression of head and neck squamous cell carcinomas. HERG1 protein expression was evaluated by immunohistochemistry in paraffin-embedded tissue specimens from 133 patients with laryngeal/hypopharyngeal squamous cell carcinomas and 75 patients with laryngeal dysplasia, and correlated with clinical data. Our findings demonstrate that HERG1 is frequently aberrantly expressed in a high percentage of primary tumors (87%), whereas expression was negligible in both stromal cells and normal-adjacent epithelia. HERG1 expression increased during head and neck squamous cell carcinoma progression and was significantly associated with lymph node metastasis (P=0.04), advanced disease stages (P<0.001), regional tumor recurrence (P=0.004), distant metastasis (P=0.03) and reduced disease-specific survival (P=0.012, log-rank test). HERG1-positive expression was also detected in 31 (41%) of 75 laryngeal dysplasias. Interestingly, HERG1 expression increased with the grade of dysplasia; however, HERG1 expression but not histology correlated significantly with increased laryngeal cancer risk (P=0.007). In addition, functional studies in head and neck squamous cell carcinoma-derived cell lines further revealed that HERG1 expression promotes anchorage-dependent and -independent cell growth and invasive capability, although independently of its ion-conducting function. Our data demonstrate that HERG1 expression is a biologically and clinically relevant feature in head and neck squamous cell carcinoma progression and also during malignant transformation, and a promising candidate as cancer risk marker and therapeutic target for head and neck squamous cell carcinoma prevention and treatment.
    Modern Pathology 03/2012; 25(8):1069-78. · 5.25 Impact Factor