Ivelina Momcheva

Yale University, New Haven, Connecticut, United States

Are you Ivelina Momcheva?

Claim your profile

Publications (71)315.44 Total impact

  • Proceedings of the International Astronomical Union 07/2015; 10(S309):293-294. DOI:10.1017/S1743921314009922
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we study a key phase in the formation of massive galaxies: the transition of star forming galaxies into massive (M_stars~10^11 Msun), compact (r_e~1 kpc) quiescent galaxies, which takes place from z~3 to z~1.5. We use HST grism redshifts and extensive photometry in all five 3D-HST/CANDELS fields, more than doubling the area used previously for such studies, and combine these data with Keck MOSFIRE and NIRSPEC spectroscopy. We first confirm that a population of massive, compact, star forming galaxies exists at z~2, using K-band spectroscopy of 25 of these objects at 2.0<z<2.5. They have a median NII/Halpha ratio of 0.6, are highly obscured with SFR(tot)/SFR(Halpha)~10, and have a large range of observed velocity dispersions. We infer from the kinematics and spatial distribution of Halpha that the galaxies have rotating disks of ionized gas that are a factor of ~2 more extended than the stellar distribution. By combining measurements of individual galaxies, we find that the kinematics are consistent with a Keplerian fall-off from V_rot~500 km/s at 1 kpc to V_rot~250 km/s at 7 kpc, and that the total mass out to this radius is dominated by the dense stellar component. Next, we study the size and mass evolution of the progenitors of compact massive galaxies. Even though individual galaxies may have had complex histories with periods of compaction and mergers, we show that the population of progenitors likely followed a simple inside-out growth track in the size-mass plane of d(log r_e) ~ 0.3 d(log M_stars). This mode of growth gradually increases the stellar mass within a fixed physical radius, and galaxies quench when they reach a stellar density or velocity dispersion threshold. As shown in other studies, the mode of growth changes after quenching, as dry mergers take the galaxies on a relatively steep track in the size-mass plane.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the stellar populations of 25 massive, galaxies ($\log[M_\ast/M_\odot] \geq 10.9$) at $1.5 < z < 2$ using data obtained with the K-band Multi-Object Spectrograph (KMOS) on the ESO VLT. Targets were selected to be quiescent based on their broadband colors and redshifts using data from the 3D-HST grism survey. The mean redshift of our sample is $\bar{z} = 1.75$, where KMOS YJ-band data probe age- and metallicity-sensitive absorption features in the rest-frame optical, including the $G$ band, Fe I, and high-order Balmer lines. Fitting simple stellar population models to a stack of our KMOS spectra, we derive a mean age of $1.03^{+0.13}_{-0.08}$ Gyr. We confirm previous results suggesting a correlation between color and age for quiescent galaxies, finding mean ages of $1.22^{+0.56}_{-0.19}$ Gyr and $0.85^{+0.08}_{-0.05}$ Gyr for the reddest and bluest galaxies in our sample. Combining our KMOS measurements with those obtained from previous studies at $0.2 < z < 2$ we find evidence for a $2-3$ Gyr spread in the formation epoch of massive galaxies. At $z < 1$ the measured stellar ages are consistent with passive evolution, while at $1 < z \lesssim2$ they appear to saturate at $\sim$1 Gyr, which likely reflects changing demographics of the (mean) progenitor population. By comparing to star-formation histories inferred for "normal" star-forming galaxies, we show that the timescales required to form massive galaxies at $z \gtrsim 1.5$ are consistent with the enhanced $\alpha$-element abundances found in massive local early-type galaxies.
    03/2015; 804(1). DOI:10.1088/2041-8205/804/1/L4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the spectroscopic redshift catalog from a wide-field survey of the fields of 28 galaxy-mass strong gravitational lenses. We discuss the acquisition and reduction of the survey data, collected over 40 nights of 6.5m MMT and Magellan time, employing four different multi-object spectrographs. We determine that no biases are introduced by combining datasets obtained with different instrument/spectrograph combinations. Special care is taken to determine redshift uncertainties using repeat observations. The redshift catalog consists of 9768 new and unique galaxy redshifts. 82.4% of the catalog redshifts are between z=0.1 and z=0.7, and the catalog median redshift is z=0.36. The data from this survey will be used to study the lens environments and line-of-sight structures to gain a better understanding of the effects of large scale structure on lens statistics and lens-derived parameters.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a spectroscopic redshift measurement of a very bright Lyman break galaxy at z=7.7302+-0.0006 using Keck/MOSFIRE. The source was pre-selected photometrically in the EGS field as a robust z~8 candidate with H=25.0 mag based on optical non-detections and a very red Spitzer/IRAC [3.6]-[4.5] broad-band color driven by high equivalent width [OIII]+Hbeta line emission. The Lyalpha line is reliably detected at >6 sigma and shows an asymmetric profile as expected for a galaxy embedded in a relatively neutral inter-galactic medium near the Planck peak of cosmic reionization. The line has a rest-frame equivalent width of EW0=21+-4 A and is extended with V_FWHM=376+89-70 km/s. The source is perhaps the brightest and most massive z~8 Lyman break galaxy in the full CANDELS and BoRG/HIPPIES surveys, having assembled already 10^(9.9+-0.2) M_sol of stars at only 650 Myr after the Big Bang. The spectroscopic redshift measurement sets a new redshift record for galaxies. This enables reliable constraints on the stellar mass, star-formation rate, formation epoch, as well as combined [OIII]+Hbeta line equivalent widths. The redshift confirms that the IRAC [4.5] photometry is very likely dominated by line emission with EW0(OIII+Hbeta)= 720-150+180 A. This detection thus adds to the evidence that extreme rest-frame optical emission lines are a ubiquitous feature of early galaxies promising very efficient spectroscopic follow-up in the future with infrared spectroscopy using JWST and, later, ELTs.
    02/2015; 804(2). DOI:10.1088/2041-8205/804/2/L30
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Nilsson et al. (2006) Lyman-alpha nebula has often been cited as the most plausible example of a Lyman-alpha nebula powered by gravitational cooling. In this paper, we bring together new data from the Hubble Space Telescope and the Herschel Space Observatory as well as comparisons to recent theoretical simulations in order to revisit the questions of the local environment and most likely power source for the Lyman-alpha nebula. In contrast to previous results, we find that this Lyman-alpha nebula is associated with 6 nearby galaxies and an obscured AGN that is offset by $\sim$4"$\approx$30 kpc from the Lyman-alpha peak. The local region is overdense relative to the field, by a factor of $\sim$10, and at low surface brightness levels the Lyman-alpha emission appears to encircle the position of the obscured AGN, highly suggestive of a physical association. At the same time, we confirm that there is no compact continuum source located within $\sim$2-3"$\approx$15-23 kpc of the Lyman-alpha peak. Since the latest cold accretion simulations predict that the brightest Lyman-alpha emission will be coincident with a central growing galaxy, we conclude that this is actually a strong argument against, rather than for, the idea that the nebula is gravitationally-powered. While we may be seeing gas within cosmic filaments, this gas is primarily being lit up, not by gravitational energy, but due to illumination from a nearby buried AGN.
    The Astrophysical Journal 01/2015; 802(1). DOI:10.1088/0004-637X/802/1/32 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present the MOSFIRE Deep Evolution Field (MOSDEF) survey. The MOSDEF survey aims to obtain moderate-resolution (R=3000-3650) rest-frame optical spectra (~3700-7000 Angstrom) for ~1500 galaxies at 1.37<z<3.80 in three well-studied CANDELS fields: AEGIS, COSMOS, and GOODS-N. Targets are selected in three redshift intervals: 1.37<z<1.70, 2.09<z<2.61, and 2.95<z<3.80, down to fixed H_AB (F160W) magnitudes of 24.0, 24.5 and 25.0, respectively, using the photometric and spectroscopic catalogs from the 3D-HST survey. We target both strong nebular emission lines (e.g., [OII], Hbeta, [OIII], 5008, Halpha, [NII], and [SII]) and stellar continuum and absorption features (e.g., Balmer lines, Ca-II H and K, Mgb, 4000 Angstrom break). Here we present an overview of our survey, the observational strategy, the data reduction and analysis, and the sample characteristics based on spectra obtained during the first 24 nights. To date, we have completed 21 masks, obtaining spectra for 591 galaxies. For ~80% of the targets we identify and measure multiple emission or absorption lines. In addition, we confirm 55 additional galaxies, which were serendipitously detected. The MOSDEF galaxy sample includes unobscured star-forming, dusty star-forming, and quiescent galaxies and spans a wide range in stellar mass (~10^9-10^11.5 Msol) and star formation rate (~0-10^4 Msol/yr). The spectroscopically confirmed sample is roughly representative of an H-band limited galaxy sample at these redshifts. With its large sample size, broad diversity in galaxy properties, and wealth of available ancillary data, MOSDEF will transform our understanding of the stellar, gaseous, metal, dust, and black hole content of galaxies during the time when the universe was most active.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interpreting observations of distant galaxies in terms of constraints on physical parameters - such as stellar mass, star-formation rate (SFR) and dust optical depth - requires spectral synthesis modelling. We analyse the reliability of these physical parameters as determined under commonly adopted `classical' assumptions: star-formation histories assumed to be exponentially declining functions of time, a simple dust law and no emission-line contribution. Improved modelling techniques and data quality now allow us to use a more sophisticated approach, including realistic star-formation histories, combined with modern prescriptions for dust attenuation and nebular emission (Pacifici et al. 2012). We present a Bayesian analysis of the spectra and multi-wavelength photometry of 1048 galaxies from the 3D-HST survey in the redshift range 0.7<z<2.8 and in the stellar mass range 9<log(M/Mo)<12. We find that, using the classical spectral library, stellar masses are systematically overestimated (~0.1 dex) and SFRs are systematically underestimated (~0.6 dex) relative to our more sophisticated approach. We also find that the simultaneous fit of photometric fluxes and emission-line equivalent widths helps break a degeneracy between SFR and optical depth of the dust, reducing the uncertainties on these parameters. Finally, we show how the biases of classical approaches can affect the correlation between stellar mass and SFR for star-forming galaxies (the `Star-Formation Main Sequence'). We conclude that the normalization, slope and scatter of this relation strongly depend on the adopted approach and demonstrate that the classical, oversimplified approach cannot recover the true distribution of stellar mass and SFR.
    Monthly Notices of the Royal Astronomical Society 11/2014; 447(1). DOI:10.1093/mnras/stu2447 · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M */M ☉) ≥ 10.9) z ~ 1-3 star-forming galaxies by increasing the sample size by a factor of six (to 44 galaxies above log(M */M ☉) ≥ 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS3Dspectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Hα, [N II], and [S II] lines ~450-5300 km s–1), with large [N II]/Hα ratios, above log(M */M ☉) ~ 10.9, with about two-thirds of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z ~ 1 and ~2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGNs), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared, or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.
    The Astrophysical Journal 10/2014; 796(1):7. DOI:10.1088/0004-637X/796/1/7 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using a sample of 299 Ha-selected galaxies at z~0.8, we study the relationship between galaxy stellar mass, gas-phase metallicity, and star formation rate (SFR), and compare to previous results. We use deep optical spectra obtained with the IMACS spectrograph at the Magellan telescope to measure strong oxygen lines. We combine these spectra and metallicities with (1) rest-frame UV-to-optical imaging, which allows us to determine stellar masses and dust attenuation corrections, and (2) Ha narrowband imaging, which provides a robust measure of the instantaneous SFR. Our sample spans stellar masses of 10^9 to 6*10^11 solar masses, SFRs of 0.4 to 270 solar masses per year, and metal abundances of 12+log(O/H)~8.3-9.1 (~0.4-2.6 solar metallicity). The correlations that we find between the Ha-based SFR and stellar mass (i.e., the star-forming "main sequence"), and between the stellar mass and metallicity, are both consistent with previous z~1 studies of star-forming galaxies. We then study the relationship between the three properties using various plane-fitting techniques (Lara-Lopez et al.) and a curve-fitting projection (Mannucci et al.). In all cases, we exclude strong dependence of the M-Z relation on SFR, but are unable to distinguish between moderate and no dependence. Our results are consistent with previous mass-metallicity-SFR studies. We check whether dataset limitations may obscure a strong dependence on the SFR by using mock samples drawn from the SDSS. These experiments reveal that the adopted signal-to-noise cuts may have a significant effect on the measured dependence. Further work is needed to investigate these results, and to test whether a "fundamental metallicity relation" or a "fundamental plane" describes star-forming galaxies across cosmic time.
    The Astronomical Journal 10/2014; 149(2). DOI:10.1088/0004-6256/149/2/79 · 4.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the KMOS^3D survey, a new integral field survey of over 600 galaxies at 0.7<z<2.7 using KMOS at the Very Large Telescope (VLT). The KMOS^3D survey utilizes synergies with multi-wavelength ground and space-based surveys to trace the evolution of spatially-resolved kinematics and star formation from a homogeneous sample over 5 Gyrs of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass ($M_*$) and rest-frame $(U-V)-M_*$ planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first year of data we detect Halpha emission in 191 $M_*=3\times10^{9}-7\times10^{11}$ Msun galaxies at z=0.7-1.1 and z=1.9-2.7. In the current sample 83% of the resolved galaxies are rotation-dominated, determined from a continuous velocity gradient and $v_{rot}/\sigma>1$, implying that the star-forming 'main sequence' (MS) is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Halpha kinematic maps indicate at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous IFS studies at z>0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km/s at z~2.3 to 25 km/s at z~0.9 while the rotational velocities at the two redshifts are comparable. Combined with existing results spanning z~0-3, disk velocity dispersions follow an approximate (1+z) evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally-stable disk theory.
    The Astrophysical Journal 09/2014; 799(2). DOI:10.1088/0004-637X/799/2/209 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3<z<2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that, despite being being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z~2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z~2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z~1.85 - whether violent disk instabilities or secular processes - are as efficient in smooth galaxies as they are in clumpy galaxies.
    The Astrophysical Journal 07/2014; 793(2). DOI:10.1088/0004-637X/793/2/101 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dense interiors of massive galaxies are among the most intriguing environments in the universe. In this paper,we ask when these dense cores were formed and determine how galaxies gradually assembled around them. We select galaxies that have a stellar mass >3 × 1010M ☉ inside r = 1 kpc out to z = 2.5, using the 3D-HST survey and data at low redshift. Remarkably, the number density of galaxies with dense cores appears to have decreased from z = 2.5 to the present. This decrease is probably mostly due to stellar mass loss and the resulting adiabatic expansion, with some contribution from merging. We infer that dense cores were mostly formed at z > 2.5, consistent with their largely quiescent stellar populations. While the cores appear to form early, the galaxies in which they reside show strong evolution: their total masses increase by a factor of 2-3 from z = 2.5 to z = 0 and their effective radii increase by a factor of 5-6. As a result, the contribution of dense cores to the total mass of the galaxies in which they reside decreases from ~50% at z = 2.5 to ~15% at z = 0. Because of their early formation, the contribution of dense cores to the total stellar mass budget of the universe is a strong function of redshift. The stars in cores with M 1 kpc > 3 × 1010M ☉ make up ~0.1% of the stellar mass density of the universe today but 10%-20% at z ~ 2, depending on their initial mass function. The formation of these cores required the conversion of ~1011M ☉ of gas into stars within ~1 kpc, while preventing significant star formation at larger radii.
    The Astrophysical Journal 07/2014; 791(1):45. DOI:10.1088/0004-637X/791/1/45 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We determine the intrinsic, 3-dimensional shape distribution of star-forming galaxies at 0<z<2.5, as inferred from their observed projected axis ratios. In the present-day universe star-forming galaxies of all masses 1e9 - 1e11 Msol are predominantly thin, nearly oblate disks, in line with previous studies. We now extend this to higher redshifts, and find that among massive galaxies (M* > 1e10 Msol) disks are the most common geometric shape at all z < 2. Lower-mass galaxies at z>1 possess a broad range of geometric shapes: the fraction of elongated (prolate) galaxies increases toward higher redshifts and lower masses. Galaxies with stellar mass 1e9 Msol (1e10 Msol) are a mix of roughly equal numbers of elongated and disk galaxies at z~1 (z~2). This suggests that galaxies in this mass range do not yet have disks that are sustained over many orbital periods, implying that galaxies with present-day stellar mass comparable to that of the Milky Way typically first formed such sustained stellar disks at redshift z~1.5-2. Combined with constraints on the evolution of the star formation rate density and the distribution of star formation over galaxies with different masses, our findings imply that, averaged over cosmic time, the majority of stars formed in disks.
    The Astrophysical Journal Letters 07/2014; 792(1). DOI:10.1088/2041-8205/792/1/L6 · 5.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the correlations between stellar mass, star formation rate (SFR), and the [N II]/Hα flux ratio as an indicator of gas-phase metallicity for a sample of 222 galaxies at 0.8 < z < 2.6 and log (M */M ☉) = 9.0-11.5 from the LUCI, SINS/zC-SINF, and KMOS3D surveys. This sample provides a unique analysis of the mass-metallicity relation (MZR) over an extended redshift range using consistent data analysis techniques and a uniform strong-line metallicity indicator. We find a constant slope at the low-mass end of the relation and can fully describe its redshift evolution through the evolution of the characteristic turnover mass where the relation begins to flatten at the asymptotic metallicity. At a fixed mass and redshift, our data do not show a correlation between the [N II]/Hα ratio and SFR, which disagrees with the 0.2-0.3 dex offset in [N II]/Hα predicted by the "fundamental relation" between stellar mass, SFR, and metallicity discussed in recent literature. However, the overall evolution toward lower [N II]/Hα at earlier times does broadly agree with these predictions.
    The Astrophysical Journal Letters 07/2014; 789(2):L40. DOI:10.1088/2041-8205/789/2/L40 · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We constrain the slope of the star formation rate ($\log\Psi$) to stellar mass ($\log\mathrm{M_{\star}}$) relation down to $\log(\mathrm{M_{\star}/M_{\odot}})=8.4$ ($\log(\mathrm{M_{\star}/M_{\odot}})=9.2$) at $z=0.5$ ($z=2.5$) with a mass-complete sample of 39,106 star-forming galaxies selected from the 3D-HST photometric catalogs, using deep photometry in the CANDELS fields. For the first time, we find that the slope is dependent on stellar mass, such that it is steeper at low masses ($\log\mathrm{\Psi}\propto\log\mathrm{M_{\star}}$) than at high masses ($\log\mathrm{\Psi}\propto(0.3-0.6)\log\mathrm{M_{\star}}$). These steeper low mass slopes are found for three different star formation indicators: the combination of the ultraviolet (UV) and infrared (IR), calibrated from a stacking analysis of Spitzer/MIPS 24$\mu$m imaging; $\beta$-corrected UV SFRs; and H$\alpha$ SFRs. The normalization of the sequence evolves differently in distinct mass regimes as well: for galaxies less massive than $\log(\mathrm{M_{\star}/M_{\odot}})<10$ the specific SFR ($\Psi/\mathrm{M_{\star}}$) is observed to be roughly self-similar with $\Psi/\mathrm{M_{\star}}\propto(1+z)^{1.9}$, whereas more massive galaxies show a stronger evolution with $\Psi/\mathrm{M_{\star}}\propto(1+z)^{2.2-3.5}$ for $\log(\mathrm{M_{\star}/M_{\odot}})=10.2-11.2$. The fact that we find a steep slope of the star formation sequence for the lower mass galaxies will help reconcile theoretical galaxy formation models with the observations. The results of this study support the analytical conclusions of Leja et al. (2014).
    The Astrophysical Journal 07/2014; 795(2). DOI:10.1088/0004-637X/795/2/104 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present near-infrared spectroscopy of a sample of 22 Extreme Emission Line Galaxies at redshifts 1.3 < z < 2.3, confirming that these are low-mass (M* = 10^8 - 10^9 M_sun) galaxies undergoing intense starburst episodes (M*/SFR ~ 10-100 Myr). The sample is selected by [O III] or H{\alpha} emission line flux and equivalent width using near-infrared grism spectroscopy from the 3D-HST survey. High-resolution NIR spectroscopy is obtained with LBT/LUCI and VLT/X-SHOOTER. The [O III]/H{\beta} line ratio is high (> 5) and [N II]/H{\alpha} is always significantly below unity, which suggests a low gas-phase metallicity. We are able to determine gas-phase metallicities for 7 of our objects using various strong-line methods, with values in the range 0.05-0.30 Z_sun and with a median of 0.15 Z_sun; for 3 of these objects we detect [O III]{\lambda}4363 which allows for a direct constraint on the metallicity. The velocity dispersion, as measured from the nebular emission lines, is typically ~50 km/s. Combined with the observed star-forming activity, the Jeans and Toomre stability criteria imply that the gas fraction must be large (> 2/3), consistent with the difference between our dynamical and stellar mass estimates. The implied gas depletion time scale (several hundred Myr) is substantially longer than the inferred mass-weighted ages (~50 Myr), which further supports the emerging picture that most stars in low-mass galaxies form in short, intense bursts of star formation.
    The Astrophysical Journal 06/2014; 791(1). DOI:10.1088/0004-637X/791/1/17 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z=2.3. GOODS-N-774 has a stellar mass of 1.0x10^11 Msun, a half-light radius of 1.0 kpc, and a star formation rate of 90[+45-20]Msun/yr. The star forming gas has a velocity dispersion 317+-30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z~2 and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.
    Nature 06/2014; 513(7518). DOI:10.1038/nature13616 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M*/Msun) >= 10.9) z~1-3 star-forming galaxies (Forster Schreiber et al.), by increasing the sample size by a factor of six (to 44 galaxies above log(M*/Msun) >= 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS^3D spectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Ha, [NII], and [SII] lines ~ 450-5300 km/s), with large [NII]/Ha ratios, above log(M*/Msun) ~ 10.9, with 66+/-15% of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z~1 and ~2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGN), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the correlations between stellar mass, star formation rate (SFR) and [NII]/Ha flux ratio as indicator of gas-phase metallicity for a sample of 222 galaxies at 0.8 < z < 2.6 and log(M*/Msun)=9.0-11.5 observed with LUCI at the LBT, and SINFONI and KMOS at the VLT. This sample provides a unique analysis of the mass-metallicity relation (MZR) over an extended redshift range using consistent data analysis techniques and strong-line metallicity indicator. Over the redshift range probed, we find a constant slope at the low-mass end of the MZR, which is however significantly steeper than seen in the local Universe. In this range, we can fully describe the redshift evolution of the MZR through the evolution of the characteristic turnover mass where the relation begins to flatten at the asymptotic metallicity. At fixed mass and redshift, our data do not show a correlation between the [NII]/Ha ratio and SFR, which disagrees with the 0.2-0.3dex offset in [NII]/Ha predicted by the "fundamental relation" between stellar mass, SFR and metallicity discussed in recent literature. However, the MZR evolution towards lower [NII]/Ha at earlier times does agree within the uncertainties with these predictions.

Publication Stats

776 Citations
315.44 Total Impact Points

Institutions

  • 2011–2015
    • Yale University
      • Department of Astronomy
      New Haven, Connecticut, United States
  • 2014
    • University of California, Santa Cruz
      Santa Cruz, California, United States
    • Academia Sinica
      • Institute of Astronomy and Astrophysics
      T’ai-pei, Taipei, Taiwan
  • 2012
    • Carnegie Institute
      Pasadena, Texas, United States
  • 2009–2010
    • Carnegie Institution for Science
      Washington, West Virginia, United States
  • 2008
    • University of Texas at Austin
      • Department of Astronomy
      Austin, Texas, United States
  • 2005–2008
    • The University of Arizona
      • Department of Astronomy
      Tucson, Arizona, United States