Are you Xiang-Yang Zhang?

Claim your profile

Publications (1)7.83 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current antipsychotic drugs are thought to inhibit central dopamine (DA) transmission by blocking DA receptors. Here, we provide evidence that the atypical antipsychotic drug clozapine may produce part of its effect by inhibiting a subset of excitatory inputs to DA neurons. Thus, in chloral hydrate-anesthetized rats, systemic administration of D-amphetamine produced two opposing effects on DA neurons in the ventral tegmental area. Under control conditions, D-amphetamine inhibited the firing of the cell through D2-like receptors. When D2-like receptors were blocked by raclopride, D-amphetamine excited DA neurons, instead of producing no effect. The excitation, expressed as an increase in firing rate and a slow oscillation in firing pattern, was suppressed by the adrenergic alpha1 receptor antagonist prazosin, suggesting an involvement of alpha1 receptors. In rats pretreated with the typical antipsychotic drug haloperidol, D-amphetamine also excited DA neurons. However, when given after clozapine, D-amphetamine produced no significant effects. The failure of D-amphetamine to produce an excitation is not due to an incomplete blockade of D2-like receptors by clozapine because co-treatment with clozapine and raclopride also failed to enable the excitatory effect of D-amphetamine. The suggestion that clozapine inhibits the excitatory effect of D-amphetamine is further supported by the finding that clozapine, given after D-amphetamine, reliably reversed D-amphetamine-induced excitation in raclopride-treated rats. Thus, different from raclopride and haloperidol, clozapine may inhibit DA transmission through two additive mechanisms: blockade of DA receptors and inhibition of an amphetamine-sensitive, excitatory pathway that innervates DA neurons.
    Neuropsychopharmacology 10/2007; 32(9):1922-8. DOI:10.1038/sj.npp.1301334 · 7.83 Impact Factor