M. Despont

IBM, Armonk, New York, United States

Are you M. Despont?

Claim your profile

Publications (125)224.43 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Digital circuits based on nanoelectromechanical (NEM) relays hold out the potential of providing an energy efficiency unachievable by conventional CMOS technology. This paper presents a detailed analysis of the operating characteristics of fabricated curved cantilever NEM relays using a comprehensive physical model. The mode of energy distribution within the electrical and mechanical operational domains of the relay is described in detail and the energy saving achievable by the technique of body-biasing is quantified. The analysis further reveals that the latency in a relay can be much larger or much smaller than the nominal mechanical delay depending on the point of actuation in the oscillation of the beam that takes place after pull-out. The methods that can utilize this phenomenon to reduce the latency of relay-based circuits are discussed, thus addressing one of the biggest challenges in NEM relay-based design.
    Circuits and Systems I: Regular Papers, IEEE Transactions on 08/2014; 61(8):2348-2359. · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heated tips offer the possibility to create arbitrary high-resolution nanostructures by local decomposition and evaporation of resist materials. Turnaround times of minutes are achieved with this patterning method due to the high-speed direct-write process and an in-situ imaging capability. Dense features with 10 nm half-pitch can be written into thin films of organic resists such as self-amplified depolymerization (SAD) polymers or molecular glasses. The patterning speed of tSPL has been increased far beyond usual scanning probe lithography (SPL) technologies and approaches the speed of Gaussian shaped electron beam lithography (EBL) for <30 nm resolution. A single tip can write complex patterns with a pixel rate of 500 kHz and a linear scan speed of 20 mm/s. Moreover, a novel scheme for stitching was developed to extend the patterning area beyond the <=100 μm range of the piezo stages. A stitching accuracy of 10 nm is obtained without the use of markers. Furthermore, the patterning depth can be controlled independently and accurately (~1 nm) at each position. Thereby, arbitrary 3D structures can be written in a single step. Finally, we demonstrated an all-dry tri-layer pattern transfer concept to create high aspect ratio structures in silicon. Dense fins and trenches with 27 nm half-pitch and a line edge roughness (LER) below 3nm (3σ) have been fabricated.
    Proc SPIE 10/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermal scanning probe lithography is used for creating lithographic patterns with 27.5 nm half-pitch line density in a 50 nm thick high carbon content organic resist on a Si substrate. The as written patterns in the poly-phthaladehyde thermal resist layer have a depth of 8 nm and they are transformed into high-aspect ratio binary patterns in the high carbon content resist using a SiO$_2$ hard-mask layer with a thickness of merely 4 nm and a sequence of selective reactive ion etching steps. Using this process, a line-edge roughness after transfer of 2.7 nm (3 $\sigma$) has been achieved. The patterns have also been transferred into 50 nm deep structures in the Si substrate with excellent conformal accuracy. The demonstrated process capabilities in terms of feature density and line-edge roughness are in accordance with today's requirements for mask-less lithography for example for the fabrication of EUV-masks.
    Nano Letters 08/2013; · 13.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A curved design for in-plane micro- and nano-electromechanical switches based on a single clamped cantilever is proposed, optimized with finite-element simulations and demonstrated experimentally. The design enables precise control of the switch motion and of the closed-state air gap, resulting in a uniform electrostatic field and increased robustness. The switch size and curvature are optimized for actuation voltage, actuation energy and the electrostatic field strength. These optimizations and the proposed fabrication process are amenable to micro- and nano-electromechanical switches. The scalability of the concept is demonstrated with simulations of nanoscale relays in terms of force and energy, showing that the concept is suitable for sub-100 aJ switching energy. Experimental results on microscale devices demonstrate the advantages of the curved MEM switches, namely a fabrication process with a single sacrificial layer for a switch with a low actuation voltage and excellent robustness. The designed as well as the experimentally observed breakdown voltage is four times higher than the contact voltage, thus enabling a large operating window for electromechanical switches.
    Journal of Micromechanics and Microengineering 01/2013; 23(2):025024. · 1.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A reduced-order model for NEM relays is presented that combines electro-mechanical beam actuation and landing of beam tip on the surface electrode. This model shows a deviation of less than 2%, for the DC as well as the transient response for beam actuation in a circuit simulation, when compared to a finite-element simulation. It also shows an excellent match for the energy. The model allows accurate circuit simulation to aid in NEM-relay based logic design, and facilitates the quantification of key gate-level metrics.
    Circuits and Systems (ISCAS), 2013 IEEE International Symposium on; 01/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new type of traveling wave antenna is presented. Key features of the antenna are planar, low mass and wide bandwidth of operation. One such antenna was designed for terahertz radiation detection and realized in standard IBM CMOS-SOI process with subsequent MEMS post processing. Measurements performed at 655GHz showed very good agreement with the theoretical predictions based on full wave simulations. The present article describes the antenna physics, design, fabrication and measurement results.
    Microwaves, Communications, Antennas and Electronics Systems (COMCAS), 2013 IEEE International Conference on; 01/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on the design, fabrication and measurements of a new THz sensor concept based on an antenna-coupled MOSFET bolometer for room-temperature passive THz imaging for security and medical-diagnostic applications. The device is fabricated in a 180-nm CMOS SOI technology followed by a post-CMOS MEMS process. In this sensor, the antenna absorbing the THz electromagnetic field is directly coupled to the bolometer for maximum energy collection, whereas its design aims at minimizing its thermal mass as is necessary for fast frame rates. DC measurements before and after the MEMS process as well as thermal time constant and THz antenna measurements are presented.
    26th International Conference on Micro Electro Mechanical Systems (MEMS); 01/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: The design of a broadband on-chip antenna for passive THz imaging in the frequency range of 0.6 THz to 1.4 THz is reported. The antenna design has to fulfill the requirements of the IBM CMOS process and the MEMS post CMOS processing. The antenna is coupled directly to the sensor, a MOSFET bolometer. Because of this direct coupling and the need for real time imaging, only extremely physically small antennas are feasible. Hence, typical broadband antennas like the toothed log-periodic antenna are not useable for this application and new antenna approaches have to be examined.
    Antenna Technology (iWAT), 2013 International Workshop on; 01/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: THz-imaging enables promising applications in the medical and security domain, such as detectors for skin cancer or full-body scanners. These new possibilities arise the need for detectors in the THz frequency range. An antenna-coupled bolometer approach in a standard CMOS-SOI process, followed by a MEMS post CMOS process, is suggested to fabricate such a detector. Therefore, in this paper a cloverleaf shaped antenna design for the frequency range 0.5 THz to 1.5 THz is presented. Several design steps are shown together with measurement results regarding the influence of the MEMS process.
    Semiconductor Conference Dresden-Grenoble (ISCDG), 2013 International; 01/2013
  • Source
    A W Knoll, D Grogg, M Despont, U Duerig
    [Show abstract] [Hide abstract]
    ABSTRACT: We discuss the fundamental processes including electron conduction and adhesion of metallic contacts pertaining to the scaling of the performance metrics of nano-electro-mechanical switches. In particular, we show that under most circumstances, the switching energy is governed by the force that is needed in order to break the electrical contact when opening the switch. For an optimally designed parallel plate capacitor switch, the energy consumption does not depend on the actuation voltage. However, stray capacitances degrade the energy efficiency if a high operating voltage is chosen. The limit is of the order of 1 V for an aggressively scaled Si device, for which an overall switching energy of the order of 150 eV, a footprint area of 2500 nm2 and a switching time of 200 ps are predicted. The scaling analysis also stipulates that materials with a low free electron density and high effective mass should be used for the electrical contact, which is counter-intuitive, as such materials are known to be poor conductors on the macroscopic scale.
    New Journal of Physics 12/2012; 14(12):123007. · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the design, fabrication, and characterization of cantilevers with integrated AlN actuators and conductive PtSi tips for multi-frequency atomic force microscopy. These cantilevers also possess a stepped-rectangular geometry. The excellent dynamic behavior of these cantilevers is investigated using both finite-element simulations and experimental methods. Several imaging experiments are presented to illustrate the efficacy and versatility of these cantilevers.
    The Review of scientific instruments 09/2012; 83(9):096107. · 1.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Structural variability and flexibility are crucial factors for biomolecular function. Here we have reduced the invasiness and enhanced the spatial resolution of atomic force microscopy (AFM) to visualize, for the first time, different structural conformations of the two polynucleotide strands in the DNA double helix, for single molecules under near-physiological conditions. This is achieved by identifying and tracking the anomalous resonance behavior of nanoscale AFM cantilevers in the immediate vicinity of the sample.
    Nano Letters 06/2012; 12(7):3846-50. · 13.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently several multi-frequency imaging techniques have been proposed that have opened up a multitude of information channels to probe surface properties in atomic force microscopy (AFM). However, the dynamics involved are significantly more complicated than in the traditional AFM modes, and hence quantitative multi-frequency AFM (MF- AFM) remains a key challenge. In this paper, we introduce custom-made micro-cantilevers with integrated actuators and a systems-theoretic modeling framework for MF-AFM, which together provide powerful experimental and theoretical tools for quantitative measurement of tip-sample interaction forces and sample properties.
    Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference on; 01/2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: The abrupt switching characteristic of nano-electromechanical (NEM) switch devices is an attractive characteristic to design energy-efficient circuits. In this paper we report the optimization of an in-plane curved cantilever switch geometry for high robustness and low switching energy. The scaling potential has been evaluated, showing that sub-100 aj switching energy is possible. The curved cantilever design has been validated experimentally with good electrical characteristics and high mechanical robustness.
    Sensors, 2012 IEEE; 01/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper the state-of-the-art in wafer-level heterogeneous D integration technologies for micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS) is reviewed. Various examples of commercial and experimental heterogeneous D integration processes for MEMS and NEMS devices are presented and discussed.
    01/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scanning probe microscopy employing conductive probes is a powerful tool for the investigation and modification of electrical properties at the nanoscale. Application areas include semiconductor metrology, probe-based data storage and materials research. Conductive probes can also be used to emulate nanoscale electrical contacts. However, unreliable electrical contact and tip wear have severely hampered the widespread usage of conductive probes for these applications. In this paper we introduce a force modulation technique for enhanced nanoscale electrical sensing using conductive probes. This technique results in lower friction, reduced tip wear and enhanced electrical contact quality. Experimental results using phase-change material stacks and platinum silicide conductive probes clearly demonstrate the efficacy of the proposed technique. Furthermore, conductive-mode imaging experiments on specially prepared platinum/carbon samples are presented to demonstrate the widespread applicability of this technique.
    Nanotechnology 09/2011; 22(35):355706. · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Archival data storage is predominantly based on magnetic tape technology. An alternative probe based multi-level recording scheme is proposed which specifically addresses the issue of long term data preservation. In a first step, the data are written as topographic relief in an organic resist. To achieve long term preservation, the relief structure is transferred in a Si based inorganic carrier by means of reactive ion etching. Thereby, the data are preserved as written in stone. Using 3-level logic, a storage density of 99 Gb/in2 is demonstrated and read-back of the data is accomplished with an error rate of 10−3 based on threshold detection. Exploiting etch anisotropy in layered substrates, logic levels can be physically separated from one another in different layers which enhances tamper resistance and also provides a means for heterogeneous storage concepts.
    Applied Physics Letters 07/2011; 99(2):023110-023110-3. · 3.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scanning probe nanolithography (SPL) has demonstrated its potential in a variety of applications like 3D nanopatterning, 'direct development' lithography, dip-pen deposition or patterning of self-assembled monolayers. One of the main issues holding back SPL has been the limited throughput for patterning and imaging. Here we present a complete lithography and metrology system based on thermomechanical writing into organic resists. Metrology is carried out using a thermoelectric topography sensing method. More specifically, we demonstrate a system with a patterning pixel clock of 500 kHz, 20 mm s(-1) linear scan speed, a positioning accuracy of 10 nm, a read-back frequency bandwidth of 100, 000 line-pairs s(-1) and a turnaround time from patterning to qualifying metrology of 1 min. Thus, we demonstrate a nanolithography system capable of implementing rapid turnaround.
    Nanotechnology 07/2011; 22(27):275306. · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present an improved conductive-mode atomic force microscopy (C-AFM) method by modulating the applied loading force on the tip. Unreliable electrical contact and tip wear are the primary challenges for electrical characterization at the nanometer scale. The experiments show that force modulation reduces tip wear by a factor of three and enhances electrical contact between tip and sample, which allows operation at lower loading force and further reduction of tip and sample wear. Long-term wear experiments with platinum silicide tips on phase change media (Ge<sub>8</sub>Sb<sub>2</sub>Te<sub>11</sub>) show a nine and two times higher conductance for loading forces of 10 and 20 nN, respectively. The proposed technique could be of significant importance in applications such as probe storage and metrology, as long-term, reliable conduction in C-AFM remains a challenge.
    Nanotechnology (IEEE-NANO), 2010 10th IEEE Conference on; 09/2010
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on wafer-level transfer technologies to integrate PZT-based radio frequency (RF) microelectromechanical-systems switches on CMOS. Such heterogeneous integration can overcome the incompatibility of PZT material with back-end-of-the-line (BEOL) CMOS technology. The PZT stack and the transfer process have been optimized to avoid degradation of the PZT actuators during the transfer. In particular, we have optimized the seed layer for the growth of highly oriented PZT on a patterned TiO<sub>2</sub>-Pt layer, optimized the electrodes structure, and developed an Al<sub>2</sub>O<sub>3</sub> capping layer to prevent degradation of PZT during the transfer process. A full wafer-level transfer process and a selective transfer technology allowing the distribution of RF switches from one source wafer to many receiving wafers has been demonstrated. The latest transfer process demonstrated exhibits great potential for cost optimization of wafer-level transfer of microdevices. In a separate experiment, we have demonstrated the BEOL CMOS compatibility of our integration technique. Switch characterization showed insertion loss of less than 0.5 dB and an isolation better than 30 dB for the 0.4- to 6-GHz frequency range with 15-V actuation voltage.
    Journal of Microelectromechanical Systems 07/2010; · 1.92 Impact Factor

Publication Stats

3k Citations
224.43 Total Impact Points

Institutions

  • 1999–2009
    • IBM
      Armonk, New York, United States
  • 1995–2008
    • Universität Basel
      • Department of Physics
      Basel, BS, Switzerland
  • 2003
    • Georgia Institute of Technology
      Atlanta, Georgia, United States
  • 1998
    • Eawag: Das Wasserforschungs-Institut des ETH-Bereichs
      Duebendorf, Zurich, Switzerland
  • 1996–1997
    • Université de Neuchâtel
      Neuenburg, Neuchâtel, Switzerland