Stéphane Lehéricy

L'Institut du Cerveau et de la Moelle Épinière, Lutetia Parisorum, Île-de-France, France

Are you Stéphane Lehéricy?

Claim your profile

Publications (341)1403.45 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sensorimotor representations of movements are created in the sensorimotor network through repeated practice to support successful and effortless performance. Writer's cramp (WC) is a disorder acquired through extensive practice of finger movements, and it is likely associated with the abnormal acquisition of sensorimotor representations. We investigated (i) the activation and connectivity changes in the brain network supporting the acquisition of sensorimotor representations of finger sequences in patients with WC and (ii) the link between these changes and consolidation of motor performance 24 h after the initial practice. Twenty-two patients with WC and 22 age-matched healthy volunteers practiced a complex sequence with the right (pathological) hand during functional MRI recording. Speed and accuracy were measured immediately before and after practice (day 1) and 24 h after practice (day 2). The two groups reached equivalent motor performance on day 1 and day 2. During motor practice, patients with WC had (i) reduced hippocampal activation and hippocampal–striatal functional connectivity; and (ii) overactivation of premotor–striatal areas, whose connectivity correlated with motor performance after consolidation. These results suggest that patients with WC use alternative networks to reach equiperformance in the acquisition of new motor memories.
    Clinical neuroimaging 12/2015; 8. DOI:10.1016/j.nicl.2015.04.013 · 2.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: The aim of this study was to evaluate Gd retention in the deep cerebellar nuclei (DCN) of linear gadolinium-based contrast agents (GBCAs) compared with a macrocyclic contrast agent. Materials and methods: The brain tissue retention of Gd of 3 linear GBCAs (gadobenate dimeglumine, gadopentetate dimeglumine, and gadodiamide) and a macrocyclic GBCA (gadoterate meglumine) was compared in healthy rats (n = 8 per group) that received 20 intravenous injections of 0.6 mmol Gd/kg (4 injections per week for 5 weeks). An additional control group with saline was included. T1-weighted magnetic resonance imaging was performed before injection and once a week during the 5 weeks of injections and for another 4 additional weeks after contrast period. Total gadolinium concentration was measured with inductively coupled plasma mass spectrometry. Blinded qualitative and quantitative evaluations of the T1 signal intensity in DCN were performed, as well as a statistical analysis on quantitative data. Results: At completion of the injection period, all the linear contrast agents (gadobenate dimeglumine, gadopentetate dimeglumine, and gadodiamide) induced a significant increase in signal intensity in DCN, unlike the macrocyclic GBCA (gadoterate meglumine) or saline. The T1 hypersignal enhancement kinetic was fast for gadodiamide. Total Gd concentrations for the 3 linear GBCAs groups at week 10 were significantly higher in the cerebellum (1.21 ± 0.48, 1.67 ± 0.17, and 3.75 ± 0.18 nmol/g for gadobenate dimeglumine, gadopentetate dimeglumine, and gadodiamide, respectively) than with the gadoterate meglumine (0.27 ± 0.16 nmol/g, P < 0.05) and saline (0.09 ± 0.12 nmol/g, P < 0.05). No significant difference was observed between the macrocyclic agent and saline. Conclusions: Repeated administrations of the linear GBCAs gadodiamide, gadobenate dimeglumine, and gadopentetate dimeglumine to healthy rats were associated with progressive and significant T1 signal hyperintensity in the DCN, along with Gd deposition in the cerebellum. This is in contrast with the macrocyclic GBCA gadoterate meglumine for which no effect was observed.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially.
    Investigative radiology 11/2015; DOI:10.1097/RLI.0000000000000241 · 4.44 Impact Factor
  • Lamia Sellami · Ines Njeh · Stephane Lehericy ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Bridging the gap between mathematical and biological models and clinical applications could be considered as one of the new challenges of medical image analysis over the ten last years. This paper presents an advanced and convivial algorithm for brain glioblastomas tumor growth modelisation. The brain glioblastomas tumor region would be extracted using a fast distribution matching developed algorithm based on global pixel wise information. A new model to simulate the tumor growth based on two major elements: Cellular Automata and Fast Marching Method (CFMM) has been developed and used to estimate the brain tumor evolution during the time. On the basis of this model, experiments were carried out on twenty pathological MRI selected cases that were carfully discussed with the clinical part. The obtained simulated results were validated with ground truth references (real tumor growth measure) using Dice Metric parameter. As carefully discussed with the clinical partner, experimental results showed that our proposed algorithm for brain glioblastomas tumor growth model proved a good agreement. Our main purpose behind this research was of course to make advances and progress during clinical explorations helping therefore radiologists in their diagnosis. Clinical decisions and guidelines would be hence so more focused with such an advanced tool that could help clinicians and ensuring more accuracy and objectivity.
    IEEE Transactions on NanoBioscience 10/2015; DOI:10.1109/TNB.2015.2450365 · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The preclinical stage of frontotemporal lobar degeneration (FTLD) is not well characterized. We conducted a brain metabolism (FDG-PET) and structural (cortical thickness) study to detect early changes in asymptomatic GRN mutation carriers (aGRN+) that were evaluated longitudinally over a 20-month period. At baseline, a left lateral temporal lobe hypometabolism was present in aGRN+ without any structural changes. Importantly, this is the first longitudinal study and, across time, the metabolism more rapidly decreased in aGRN+ in lateral temporal and frontal regions. The main structural change observed in the longitudinal study was a reduction of cortical thickness in the left lateral temporal lobe in carriers. A limit of this study is the relatively small sample (n = 16); nevertheless, it provides important results. First, it evidences that the pathological processes develop a long time before clinical onset, and that early neuroimaging changes might be detected approximately 20 years before the clinical onset of disease. Second, it suggests that metabolic changes are detectable before structural modifications and cognitive deficits. Third, both the baseline and longitudinal studies provide converging results implicating lateral temporal lobe as early involved in GRN disease. Finally, our study demonstrates that structural and metabolic changes could represent possible biomarkers to monitor the progression of disease in the presymptomatic stage toward clinical onset.
    Journal of Alzheimer's disease: JAD 09/2015; 47(3):751-759. DOI:10.3233/JAD-150270 · 4.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Paracetamol's (APAP) mechanism of action suggests the implication of supraspinal structures but no neuroimaging study has been performed in humans. Methods and results: This randomized, double-blind, crossover, placebo-controlled trial in 17 healthy volunteers (NCT01562704) aimed to evaluate how APAP modulates pain-evoked functional magnetic resonance imaging signals. We used behavioral measures and functional magnetic resonance imaging to investigate the response to experimental thermal stimuli with APAP or placebo administration. Region-of-interest analysis revealed that activity in response to noxious stimulation diminished with APAP compared to placebo in prefrontal cortices, insula, thalami, anterior cingulate cortex, and periaqueductal gray matter. Conclusion: These findings suggest an inhibitory effect of APAP on spinothalamic tracts leading to a decreased activation of higher structures, and a top-down influence on descending inhibition. Further binding and connectivity studies are needed to evaluate how APAP modulates pain, especially in the context of repeated administration to patients with pain.
    Drug Design, Development and Therapy 08/2015; 9:3853-62. DOI:10.2147/DDDT.S81004 · 3.03 Impact Factor
  • Source
    Yulia Worbe · Stephane Lehericy · Andreas Hartmann ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Tics are hyperkinetic movements that are distinctive by their variety in semiology and duration and by their ability to be modulated by cognitive control. They are the hallmark of Gilles de la Tourette syndrome. Despite the variety of clinical presentations in this syndrome, dysfunction of cortico-striato-pallido-thalamo-cortical networks is suggested as a core pathophysiological mechanism. We review recent structural and functional neuroimaging studies that focused on the anatomical substrate of tics and their possible genesis. These studies showed a consistent relationship between structural and functional abnormalities within motor cortico-basal ganglia circuits and occurrence of tics. The failure of top-down cortical control over motor pathways because of the atypical trajectory of brain development could be a possible mechanism of tic genesis. Occurrence of tics results in several adaptive mechanisms, including modification of cortico-striatal network activity (reduced functional activation of the primary motor cortex) and neurochemical (increased γ-aminobutyric acid concentrations in the supplementary motor area) and microstructural white matter pathways rearrangements. © 2015 International Parkinson and Movement Disorder Society
    Movement Disorders 08/2015; 30(9). DOI:10.1002/mds.26333 · 5.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hippocampus is crucial for long-term episodic memory and learning. It undergoes structural change in aging and is sensitive to neurodegenerative and psychiatric diseases. MRS studies have seldom been performed in the hippocampus due to technical challenges. The reproducibility of MRS in the hippocampus has not been evaluated at 3 T. The purpose of the present study was to quantify the concentration of metabolites in a small voxel placed in the hippocampus and evaluate the reproducibility of the quantification. Spectra were measured in a 2.4 mL voxel placed in the left hippocampus covering the body and most of the tail of the structure in 10 healthy subjects across three different sessions and quantified using LCModel. High-quality spectra were obtained, which allowed a reliable quantification of 10 metabolites including glutamate and glutamine. Reproducibility of MRS was evaluated with coefficient of variation, standard errors of measurement, and intraclass correlation coefficients. All of these measures showed improvement with increased number of averages. Changes of less than 5% in concentration of N-acetylaspartate, choline-containing compounds, and total creatine and of less than 10% in concentration of myo-inositol and the sum of glutamate and glutamine can be confidently detected between two measurements in a group of 20 subjects. A reliable and reproducible neurochemical profile of the human hippocampus was obtained using MRS at 3 T in a small hippocampal volume. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
    NMR in Biomedicine 08/2015; 28(10). DOI:10.1002/nbm.3364 · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Medial temporal lobe epilepsy (TLE) with hippocampal sclerosis is often accompanied by widespread changes in ipsilateral and contralateral white matter connectivity. Recent studies have proposed that patients may show pathologically enhanced wiring of the limbic circuits. To better address this issue, we specifically probed connection patterns between hippocampus and thalamus and examined their impact on cognitive function. A group of 44 patients with TLE (22 with right and 22 with left hippocampal sclerosis) and 24 healthy control participants were examined with high-resolution T1 imaging, memory functional magnetic resonance imaging (fMRI) and probabilistic diffusion tractography. Thirty-four patients had further extensive neuropsychological testing. After whole brain segmentation with FreeSurfer, tractography streamline samples were drawn with hippocampus as the seed and thalamus as the target region. Two tractography strategies were applied: The first targeted the anatomic thalamic volume segmented in FreeSurfer and the second a functional region of interest in the mediodorsal thalamus derived from the activation during delayed recognition memory. We found a pronounced enhancement of connectivity between the sclerotic hippocampus and the ipsilateral thalamus both in the right and left TLE as compared to healthy control participants. This finding held for both the anatomically and the functionally defined thalamic target. Although differences were apparent in the number of absolute fibers, they were most pronounced when correcting for hippocampal volume. In terms of cognitive function, the number of hippocampal-thalamic connections was negatively correlated with performance in a variety of executive tasks, notably in the Trail Making Test, thus suggesting that the pathologic wiring did not compensate cognitive curtailing. We suggest that TLE is accompanied by an abnormal and dysfunctional enhancement of connectivity between the hippocampus and the thalamus, which is maximal on the side of the sclerosis. This pathologic pattern of limbic wiring might reflect structural remodeling along common pathways of seizure propagation. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
    Epilepsia 07/2015; 56(8). DOI:10.1111/epi.13051 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Essential tremor is a movement disorder characterized by tremor during voluntary movements, mainly affecting the upper limbs. The cerebellum and its connections to the cortex are known to be involved in essential tremor, but no task-free intrinsic signatures of tremor related to structural cerebellar defects have so far been found in the cortical motor network. Here we used voxel-based morphometry, tractography and resting-state functional MRI at 3 T to compare structural and functional features in 19 patients with essential tremor and homogeneous symptoms in the upper limbs, and 19 age- and gender-matched healthy volunteers. Both structural and functional abnormalities were found in the patients' cerebellum and supplementary motor area. Relative to the healthy controls, the essential tremor patients' cerebellum exhibited less grey matter in lobule VIII and less effective connectivity between each cerebellar cortex and the ipsilateral dentate nucleus. The patient's supplementary motor area exhibited (i) more grey matter; (ii) a lower amplitude of low-frequency fluctuation of the blood oxygenation level-dependent signal; (iii) less effective connectivity between each supplementary motor area and the ipsilateral primary motor hand area, and (iv) a higher probability of connection between supplementary motor area fibres and the spinal cord. Structural and functional changes in the supplementary motor area, but not in the cerebellum, correlated with clinical severity. In addition, changes in the cerebellum and supplementary motor area were interrelated, as shown by a correlation between the lower amplitude of low-frequency fluctuation in the supplementary motor area and grey matter loss in the cerebellum. The structural and functional changes observed in the supplementary motor area might thus be a direct consequence of cerebellar defects: the supplementary motor area would attempt to reduce tremor in the motor output by reducing its communication with M1 hand areas and by directly modulating motor output via its corticospinal projections. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email:
    Brain 06/2015; DOI:10.1093/brain/awv171 · 9.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: To prospectively compare in healthy rats the effect of multiple injections of macrocyclic (gadoterate meglumine) and linear (gadodiamide) gadolinium-based contrast agents (GBCAs) on T1-weighted signal intensity in the deep cerebellar nuclei (DCN), including the dentate nucleus. Materials and methods: Healthy rats (n = 7/group) received 20 intravenous injections of 0.6 mmol of gadolinium (Gd) per kilogram (4 injections per week during 5 weeks) of gadodiamide, gadoterate meglumine, or hyperosmolar saline (control group). Brain T1-weighted magnetic resonance imaging was performed before and once a week during the 5 weeks of injections and during 5 additional weeks (treatment-free period). Gadolinium concentrations were measured with inductively coupled plasma mass spectrometry in plasma and brain. Blinded qualitative and quantitative evaluations of the T1 signal intensity in DCN were performed, as well as a statistical analysis on quantitative data. Results: A significant and persistent T1 signal hyperintensity in DCN was observed only in gadodiamide-treated rats. The DCN-to-cerebellar cortex signal ratio was significantly increased from the 12th injection of gadodiamide (1.070 ± 0.024) compared to the gadoterate meglumine group (1.000 ± 0.033; P < 0.001) and control group (1.019 ± 0.022; P < 0.001) and did not significantly decrease during the treatment-free period. Total Gd concentrations in the gadodiamide group were significantly higher in the cerebellum (3.66 ± 0.91 nmol/g) compared with the gadoterate meglumine (0.26 ± 0.12 nmol/g; P < 0.05) and control (0.06 ± 0.10 nmol/g; P < 0.05) groups. Conclusions: Repeated administrations of the linear GBCA gadodiamide to healthy rats are associated with progressive and persistent T1 signal hyperintensity in the DCN, with Gd deposition in the cerebellum in contrast with the macrocyclic GBCA gadoterate meglumine for which no effect was observed.
    Investigative radiology 06/2015; 50(8). DOI:10.1097/RLI.0000000000000181 · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The goal of this work was to investigate iron deposition in the basal ganglia and thalamus in symptomatic and asymptomatic leucine-rich repeat kinase 2 (LRRK2) and Parkin-associated Parkinson's disease (PD), using R2* relaxometry rate. Twenty subjects with genetic PD (four symptomatic and two asymptomatic Parkin subjects, nine symptomatic and five asymptomatic LRRK2 subjects) were compared with 20 patients with idiopathic PD (IPD) and 20 healthy subjects. Images were obtained at 3 teslas, using multi-echo T2 and T2* sequences. R2 and R2* values were calculated in the substantia nigra (SN), the striatum, the globus pallidus, and the thalamus. The R2* values in the SN were increased in IPD and mutation-carrying patients as compared with controls and in mutation-carrying patients as compared with IPD. Asymptomatic mutation carriers showed higher R2* values than controls and did not differ from IPD patients. No changes were seen in the other structures or in R2 values. These results are consistent with increased iron load in LRRK2- and Parkin-mutation carriers. The increased R2* in asymptomatic PD-mutation carriers suggests that iron deposition occurs early during the preclinical phase of the disease. R2* measurements may be used as markers for investigating nigrostriatal damage in preclinical mutation-carrying patients. © 2015 International Parkinson and Movement Disorder Society. © 2015 International Parkinson and Movement Disorder Society.
    Movement Disorders 05/2015; 30(8). DOI:10.1002/mds.26218 · 5.68 Impact Factor

  • Médecine du Sommeil 03/2015; 12(1). DOI:10.1016/j.msom.2015.01.147
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To design a fast and accurate semi-automated segmentation method for spinal cord 3T MR images and to construct a template of the cervical spinal cord. A semi-automated double threshold-based method (DTbM) was proposed enabling both cross-sectional and volumetric measures from 3D T2-weighted turbo spin echo MR scans of the spinal cord at 3T. Eighty-two healthy subjects, 10 patients with amyotrophic lateral sclerosis, 10 with spinal muscular atrophy and 10 with spinal cord injuries were studied. DTbM was compared with active surface method (ASM), threshold-based method (TbM) and manual outlining (ground truth). Accuracy of segmentations was scored visually by a radiologist in cervical and thoracic cord regions. Accuracy was also quantified at the cervical and thoracic levels as well as at C2 vertebral level. To construct a cervical template from healthy subjects' images (n=59), a standardization pipeline was designed leading to well-centered straight spinal cord images and accurate probability tissue map. Visual scoring showed better performance for DTbM than for ASM. Mean Dice similarity coefficient (DSC) was 95.71% for DTbM and 90.78% for ASM at the cervical level and 94.27% for DTbM and 89.93% for ASM at the thoracic level. Finally, at C2 vertebral level, mean DSC was 97.98% for DTbM compared with 98.02% for TbM and 96.76% for ASM. DTbM showed similar accuracy compared with TbM, but with the advantage of limited manual interaction. A semi-automated segmentation method with limited manual intervention was introduced and validated on 3T images, enabling the construction of a cervical spinal cord template.
    PLoS ONE 03/2015; 10(3):e0122224. DOI:10.1371/journal.pone.0122224 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imaging the spinal cord of spinal cord injury (SCI) patients is challenging due to pain and sores problems that could be caused by a prolonged lying position in the scanner. Once positioned within the MRI the subject cannot be displaced and therefore subject centering within the scanner (A-P and L-R directions) is not ensured. Thus, centering spinal cord images in the A-P and L-R directions is necessary to make group analysis and accurately quantifying cord atrophy in SCI patients. A Symmetry-based reorientation algorithm for the spinal cord 3T R images was proposed and evaluated on 32 data using both an imposed rotation angle and visual strategies. The proposed reorientation algorithm was proven to be efficient at C2 vertebral level.
    Journées RITS 2015; 03/2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, the concept of ‘clinically relevant penumbra’ was defined as an area saved by arterial recanalization and correlated with stroke outcome. This clinically relevant penumbra was located in the subcortical structures, especially the periventricular white matter. Our aims were to confirm this hypothesis, to investigate the impact of admission hyperglycemia and of insulin treatment on the severity of ischemic damages in this area and to study the respective contributions of infarct volume and ischemic damage severity of the clinically relevant penumbra on 3-month outcome.Methods We included 99 patients from the INSULINFARCT trial. Voxel-Based Analysis was carried on the Apparent Diffusion Coefficient (ADC) maps obtained at day one to localize the regions, which were more damaged in patients i) with poor clinical outcomes at three months and ii) without arterial recanalization. We determined the intersection of the detected areas, which represents the clinically relevant penumbra and investigated whether hyperglycemic status and insulin regimen affected the severity of ischemic damages in this area. We performed logistic regression to examine the contribution of infarct volume or early ADC decrease in this strategic area on 3-month outcome.FindingsLower ADC values were found in the corona radiata in patients with poor prognosis (p
    PLoS ONE 03/2015; 10(3)::e0120230. doi: 10.1371/journal.pone.0120230. DOI:10.1371/journal.pone.0120230 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by the presence of motor and vocal tics. We hypothesized that patients with this syndrome would present an aberrant pattern of cortical formation, which could potentially reflect global alterations of brain development. Using 3 Tesla structural neuroimaging, we compared sulcal depth, opening, and length and thickness of sulcal gray matter in 52 adult patients and 52 matched controls. Cortical sulci were automatically reconstructed and identified over the whole brain, using BrainVisa software. We focused on frontal, parietal, and temporal cortical regions, in which abnormal structure and functional activity were identified in previous neuroimaging studies. Partial correlation analysis with age, sex, and treatment as covariables of noninterest was performed amongst relevant clinical and neuroimaging variables in patients. Patients with Gilles de la Tourette syndrome showed lower depth and reduced thickness of gray matter in the pre- and post-central as well as superior, inferior, and internal frontal sulci. In patients with associated obsessive-compulsive disorder, additional structural changes were found in temporal, insular, and olfactory sulci. Crucially, severity of tics and of obsessive-compulsive disorder measured by Yale Global Tic severity scale and Yale-Brown Obsessive-Compulsive scale, respectively, correlated with structural sulcal changes in sensorimotor, temporal, dorsolateral prefrontal, and middle cingulate cortical areas. Patients with Gilles de la Tourette syndrome displayed an abnormal structural pattern of cortical sulci, which correlated with severity of clinical symptoms. Our results provide further evidence of abnormal brain development in GTS. © 2015 International Parkinson and Movement Disorder Society. © 2015 International Parkinson and Movement Disorder Society.
    Movement Disorders 03/2015; 30(5). DOI:10.1002/mds.26207 · 5.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Combinatorial syntax has been shown to be underpinned by cortical key regions such as Broca's area and temporal cortices, and by subcortical structures such as the striatum. The cortical regions are connected via several cortico-to-cortical tracts impacting syntactic processing (e.g., the arcuate) but it remains unclear whether and how the striatum can be integrated into this cortex-centered syntax network. Here, we used a systematic stepwise approach to investigate the existence and syntactic function of an additional deep Broca-striatum pathway. We first asked 15 healthy controls and 12 patients with frontal/striatal lesions to perform three syntax tests. The results obtained were subjected to voxel-based lesion-symptom mapping (VLSM) to provide an anatomo-functional approximation of the pathway. The significant VLSM clusters were then overlapped with the probability maps of four cortico-cortical language tracts generated for 12 healthy participants (arcuate, extreme capsule fiber system, uncinate, aslant), including a probabilistic Broca-striatum tract. Finally, we carried out quantitative analyses of the relationship between the lesion load along the tracts and syntactic processing, by calculating tract-lesion overlap for each patient and analyzing the correlation with syntactic data. Our findings revealed a Broca-striatum tract linking BA45 with the left caudate head and overlapping with VLSM voxel clusters relating to complex syntax. The lesion load values for this tract were correlated with complex syntax scores, whereas no such correlation was observed for the other tracts. These results extend current syntax-network models, by adding a deep "Broca-caudate pathway," and are consistent with functional accounts of frontostriatal circuits. Hum Brain Mapp, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    Human Brain Mapping 02/2015; 36(6). DOI:10.1002/hbm.22769 · 5.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To validate semiautomated spinal cord segmentation in healthy subjects and patients with neurodegenerative diseases and trauma. Forty-nine healthy subjects, as well as 29 patients with amyotrophic lateral sclerosis, 19 with spinal muscular atrophy, and 14 with spinal cord injuries were studied. Cord area was measured from T2 -weighted 3D turbo spin echo images (cord levels from C2 to T9) using the semiautomated segmentation method of Losseff et al (Brain [1996] 119(Pt 3):701-708), compared with manual segmentation. Reproducibility was evaluated using the inter- and intraobserver coefficient of variation (CoV). Accuracy was assessed using the Dice similarity coefficient (DSC). Robustness to initialization was assessed by simulating modifications to the contours drawn manually prior to segmentation. Mean interobserver CoV was 4.00% for manual segmentation (1.90% for Losseff's method) in the cervical region and 5.62% (respectively 2.19%) in the thoracic region. Mean intraobserver CoV was 2.34% for manual segmentation (1.08% for Losseff's method) in the cervical region and 2.35% (respectively 1.34%) in the thoracic region. DSC was high (0.96) in both cervical and thoracic regions. DSC remained higher than 0.8 even when modifying initial contours by 50%. The semiautomated segmentation method showed high reproducibility and accuracy in measuring spinal cord area. J. Magn. Reson. Imaging 2014. © 2014 Wiley Periodicals, Inc.
    Journal of Magnetic Resonance Imaging 02/2015; 41(2). DOI:10.1002/jmri.24571 · 3.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To study the effect of donepezil on the rate of hippocampal atrophy in prodromal Alzheimer's disease (AD). A double-blind, randomized, placebo-controlled parallel group design using donepezil (10 mg/day) in subjects with suspected prodromal AD. Subjects underwent two brain magnetic resonance imaging scans (baseline and final visit). The primary efficacy outcome was the annualized percentage change (APC) of total hippocampal volume (left + right) measured by an automated segmentation method. Two-hundred and sixteen only subjects were randomized across 28 French expert clinical sites. In the per protocol population (placebo = 92 and donepezil = 82), the donepezil group exhibited a significant reduced rate of hippocampal atrophy (APC = -1.89%) compared with the placebo group (APC = -3.47%), P < .001. There was no significant difference in neuropsychological performance between treatment groups. A 45% reduction of rate of hippocampal atrophy was observed in prodromal AD following 1 year of treatment with donepezil compared with placebo. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
    Alzheimer's & dementia: the journal of the Alzheimer's Association 01/2015; DOI:10.1016/j.jalz.2014.10.003 · 12.41 Impact Factor

Publication Stats

12k Citations
1,403.45 Total Impact Points


  • 2010-2015
    • L'Institut du Cerveau et de la Moelle Épinière
      Lutetia Parisorum, Île-de-France, France
    • City of Stockholm
      Tukholma, Stockholm, Sweden
  • 2006-2015
    • Pierre and Marie Curie University - Paris 6
      • Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière
      Lutetia Parisorum, Île-de-France, France
    • Centre Hospitalier Universitaire de Grenoble
      Grenoble, Rhône-Alpes, France
    • Seattle BioMed
      Seattle, Washington, United States
  • 1997-2015
    • Hôpital La Pitié Salpêtrière (Groupe Hospitalier "La Pitié Salpêtrière - Charles Foix")
      • • Département des Maladies du Système Nerveux
      • • Service de Neurochirurgie
      Lutetia Parisorum, Île-de-France, France
  • 2014
    • Université Paris-Sorbonne - Paris IV
      Lutetia Parisorum, Île-de-France, France
  • 2007-2014
    • CENIR - Centre de Neuroimagerie de Recherche
      Lutetia Parisorum, Île-de-France, France
  • 1999-2014
    • French Institute of Health and Medical Research
      Lutetia Parisorum, Île-de-France, France
  • 2011-2013
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
    • Université Paris-Sud 11
      Orsay, Île-de-France, France
  • 2009-2013
    • Polytech Paris-UPMC
      Lutetia Parisorum, Île-de-France, France
    • Centre Hospitalier Régional Universitaire de Lille
      • Division of Neurology
      Lille, Nord-Pas-de-Calais, France
    • Université de Montréal
      Montréal, Quebec, Canada
    • Centre Hospitalier Universitaire Rouen
      Rouen, Upper Normandy, France
    • Assistance Publique – Hôpitaux de Paris
      Lutetia Parisorum, Île-de-France, France
    • Centre Hospitalier Universitaire de Nantes
      Naoned, Pays de la Loire, France
  • 2006-2011
    • UPMC
      Pittsburgh, Pennsylvania, United States
  • 2008-2010
    • Unité Inserm U1077
      Caen, Lower Normandy, France
  • 1998-2010
    • Hôpitaux Universitaires La Pitié salpêtrière - Charles Foix
      Lutetia Parisorum, Île-de-France, France
  • 2005-2006
    • University of Minnesota Duluth
      Duluth, Minnesota, United States
  • 2004-2006
    • Center for Magnetic Resonance Research Minnesota, USA
      Minneapolis, Minnesota, United States
  • 2003
    • Atomic Energy and Alternative Energies Commission
      Fontenay, Île-de-France, France
  • 2000-2003
    • Cea Leti
      Grenoble, Rhône-Alpes, France
    • Centro de Estudios y Experimentación de Obras Públicas
      Madrid, Madrid, Spain
  • 2002
    • Collège de France
      Lutetia Parisorum, Île-de-France, France