Joseph A Hollenbaugh

University of Rochester, Rochester, New York, United States

Are you Joseph A Hollenbaugh?

Claim your profile

Publications (4)23.1 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: SAMHD1 is an HIV-1 restriction factor in non-dividing monocytes, dendritic cells (DCs), macrophages, and resting CD4+ T-cells. Acting as a deoxynucleoside triphosphate (dNTP) triphosphohydrolase, SAMHD1 hydrolyzes dNTPs and restricts HIV-1 infection in macrophages and resting CD4+ T-cells by decreasing the intracellular dNTP pool. However, the intracellular dNTP pool in DCs and its regulation by SAMHD1 remain unclear. SAMHD1 has been reported as a type I interferon (IFN)-inducible protein, but whether type I IFNs upregulate SAMHD1 expression in primary DCs and CD4+ T-lymphocytes is unknown. RESULTS: Here, we report that SAMHD1 significantly blocked single-cycle and replication-competent HIV-1 infection of DCs by decreasing the intracellular dNTP pool and thereby limiting the accumulation of HIV-1 late reverse transcription products. Type I IFN treatment did not upregulate endogenous SAMHD1 expression in primary DCs or CD4+ T-lymphocytes, but did in HEK 293T and HeLa cell lines. When SAMHD1 was over-expressed in these two cell lines to achieve higher levels than that in DCs, no HIV-1 restriction was observed despite partially reducing the intracellular dNTP pool. CONCLUSIONS: Our results suggest that SAMHD1-mediated reduction of the intracellular dNTP pool in DCs is a common mechanism of HIV-1 restriction in myeloid cells. Endogenous expression of SAMHD1 in primary DCs or CD4+ T-lymphocytes is not upregulated by type I IFNs.
    Retrovirology 12/2012; 9(1):105. · 5.66 Impact Factor
  • Baek Kim, Laura A Nguyen, Waaqo Daddacha, Joseph A Hollenbaugh
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, SAMHD1 has come under intense focus as a host anti-HIV factor. SAMHD1 is a dNTP triphosphohydrolase, which leads to the regulation of DNA metabolism in host cells. HIV-2/SIV (simian immunodeficiency virus) viral protein x (Vpx) has been shown to promote the degradation of SAMHD1. In this study, we examine the kinetics of SAMHD1 degradation, the increase in the dNTP pool level, and the efficiency of proviral DNA synthesis in Vpx+ virus-like particle (VLP)-treated monocyte-derived macrophages (MDMs). Our results indicate a very close temporal link with a reduction in SAMHD1 detected within the first few hours of Vpx+ VLP treatment. This loss of SAMHD1 is followed by a significant increase in cellular dNTP levels by 8 h after Vpx+ VLP addition, ultimately leading to the enhancement of the HIV proviral DNA synthesis rate and HIV infection in MDMs. Finally, the pretreatment of MDMs with the Vpx+ VLPs, which is a widely used protocol, displayed identical proviral DNA synthesis as compared with MDMs co-treated with Vpx+ VLP and HIV vector. These findings further indicate that Vpx degradation of SAMHD1 is sufficiently rapid to enable appropriate progression of reverse transcription in MDMs, even when present at the time of infection. Overall, this study demonstrates a tight interplay between SAMHD1 level, dNTP levels, and HIV proviral DNA synthesis kinetics in MDMs.
    Journal of Biological Chemistry 05/2012; 287(26):21570-4. · 4.65 Impact Factor
  • Source
    Baek Kim, Laura A. Nguyen, Waaqo Daddacha, Joseph A. Hollenbaugh
    Journal of Biological Chemistry 05/2012; · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leishmaniasis is a parasitic disease that is widely prevalent in many tropical and sub-tropical regions of the world. Infection with Leishmania has been recognized to induce a striking acceleration of Human Immunodeficiency Virus Type 1 (HIV-1) infection in coinfected individuals through as yet incompletely understood mechanisms. Cells of the monocyte/macrophage lineage are the predominant cell types coinfected by both pathogens. Monocytes and macrophages contain extremely low levels of deoxynucleoside triphosphates (dNTPs) due to their lack of cell cycling and S phase, where dNTP biosynthesis is specifically activated. Lentiviruses, such as HIV-1, are unique among retroviruses in their ability to replicate in these non-dividing cells due, at least in part, to their highly efficient reverse transcriptase (RT). Nonetheless, viral replication progresses more efficiently in the setting of higher intracellular dNTP concentrations related to enhanced enzyme kinetics of the viral RT. In the present study, in vitro infection of CD14+ peripheral blood-derived human monocytes with Leishmania major was found to induce differentiation, marked elevation of cellular p53R2 ribonucleotide reductase subunit and R2 subunit expression. The R2 subunit is restricted to the S phase of the cell cycle. Our dNTP assay demonstrated significant elevation of intracellular monocyte-derived macrophages (MDMs) dNTP concentrations in Leishmania-infected cell populations as compared to control cells. Infection of Leishmania-maturated MDMs with a pseudotyped GFP expressing HIV-1 resulted in increased numbers of GFP+ cells in the Leishmania-maturated MDMs as compared to control cells. Interestingly, a sub-population of Leishmania-maturated MDMs was found to have re-entered the cell cycle, as demonstrated by BrdU labeling. In conclusion, Leishmania infection of primary human monocytes promotes the induction of an S phase environment and elevated dNTP levels with notable elevation of HIV-1 expression in the setting of coinfection.
    PLoS Pathogens 04/2012; 8(4):e1002635. · 8.14 Impact Factor