R. Rojas

University of Hawaiʻi at Mānoa, Honolulu, HI, United States

Are you R. Rojas?

Claim your profile

Publications (1)1.16 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes a model package that simulates coastal flooding resulting from storm surge and waves generated by tropical cyclones. The package consists of four component models implemented at three levels of nested geographic regions, namely, ocean, coastal, and nearshore. The operation is automated through a preprocessor that prepares the computational grids and input atmospheric conditions and manages the data transfer between components. The third generation spectral wave model WAM and a nonlinear long-wave model calculate respectively the wave conditions and storm surge over the ocean region. The simulation results define the water levels and boundary conditions for the model SWAN to transform the storm waves in coastal regions. The storm surge and local tides define the water level in each nearshore region, where a Boussinesq model uses the wave spectra output from SWAN to simulate the surf-zone processes and runup along the coastline. The package is applied to hindcast the coastal flooding caused by Hurricanes Iwa and Iniki, which hit the Hawaiian Island of Kauai in 1982 and 1992, respectively. The model results indicate good agreement with the storm-water levels and overwash debris lines recorded during and after the events, demonstrating the capability of the model package as a forecast tool for emergency management.
    Ocean Engineering 01/2003; · 1.16 Impact Factor