Raghunathan Rengaswamy

Texas Tech University, Lubbock, Texas, United States

Are you Raghunathan Rengaswamy?

Claim your profile

Publications (107)106.76 Total impact

  • Source
    K. Villez, R. Rengaswamy
  • Source
    K. Villez, R. Rengaswamy
  • Jeevan Maddala, Siva A. Vanapalli, Raghunathan Rengaswamy
    [Show abstract] [Hide abstract]
    ABSTRACT: Droplets moving in a microfluidic loop device exhibit both periodic and chaotic behaviors based on the inlet droplet spacing. We observe that the periodic behavior is an outcome of carrier phase mass conservation principle, which translates into a droplet spacing quantization rule. This rule implies that the summation of exit spacing is equal to an integral multiple of inlet spacing. This principle also enables identification of periodicity in experimental systems with input scatter. We find that the origin of chaotic behavior is through intermittency, which arises when drops enter and leave the junctions at the same time. We derive an analytical expression to estimate the occurrence of these chaotic regions as a function of system parameters. We provide experimental, simulation, and analytical results to validate the origin of periodic and chaotic behavior.
    01/2014; 89(2).
  • Babji Srinivasan, Ulaganathan Nallasivam, Raghunathan Rengaswamy
    [Show abstract] [Hide abstract]
    ABSTRACT: In industrial plants with non-oscillatory set points, oscillation detection and diagnosis is a key step to improve plant performance and safety. Oscillations in linear closed loop systems can occur due to one or more of the following reasons: (i) changes in process/controller settings, (ii) stiction in control valves, (iii) external oscillatory disturbances, (iv) quantization effects and, (v) presence of saturation and hysteresis in closed loop systems. Though there are techniques to address oscillation diagnosis problem, there are gray areas such as the identification of multiple sources that cause oscillations in the process output. In this work, this problem is addressed through the development of an algorithm to identify multiple sources of oscillations in Single Input Single Output (SISO) loops. Further, an integrated approach to diagnose both single/multiple root causes in SISO loops is presented. Simulation and industrial case studies are provided to show the applicability of the proposed algorithms.
    Chemical Engineering Research and Design 01/2014; · 1.93 Impact Factor
  • Jeevan Maddala, Raghunathan Rengaswamy
    [Show abstract] [Hide abstract]
    ABSTRACT: Accelerated progress in the use of droplet-based microfluidics for high throughput screening and biochemical analysis will require development of devices that are robust to experimental uncertainties and which offer multiple functionalities. Achieving precise functionalities in microfluidic devices is challenging because droplets exhibit complex dynamic behavior in these devices due to hydrodynamic interactions and discontinuities that are a result of discrete decision-making at junctions. For example, even a simple loop device can show transitions from periodic to aperiodic/chaotic behavior based on input conditions. Hence, rational design frameworks that handle this complexity are required to move this field from labs to industrial practice. Two main challenges that need to be confronted in the realization of such a rational design framework are: (i) computational science related to rapid simulation of very large networks; development of predictive models that will form the basis for characterizing droplet motion through interconnected and intricate large-scale networks, and (ii) conceptualization of a design approach that is generic in nature and not very narrowly defined limiting its application potential. In this paper, we develop a GA approach for the design of ladder networks that are used to control the relative droplet distance at the exit. Through several case studies, the potential of the proposed GA approach in designing exquisite ladder structures for multiple functions is demonstrated. A recently proposed network model is used as the basis for all the computational studies reported in this paper.
    Computers & Chemical Engineering 01/2014; 60:413–425. · 2.09 Impact Factor
  • Tim Spinner, Babji Srinivasan, Raghunathan Rengaswamy
    [Show abstract] [Hide abstract]
    ABSTRACT: This work presents a new look at the existing data-based and non-intrusive PI (proportional-integral) controller tuning assessment methods for SISO (single-input single-output) systems under regulatory control. Poorly tuned controllers are a major contributor to performance deterioration in process industries both directly and indirectly, as in the case of actuator cycling and eventual failure due to aggressive tuning. In this paper, an extensive review and classification of performance assessment and automated retuning algorithms, both classical and recent is provided. A subset of more recent algorithms that rely upon classification of poor tuning into the general categories of sluggish tuning and aggressive tuning are compared by their diagnostic performance. The Hurst exponent is introduced as a method for diagnosis of sluggish and aggressive control loop tuning. Also, a framework for more rigorous definitions than previously available of the terms “sluggish tuning” and “aggressive tuning” are provided herein. The performance of several tuning diagnosis methods are compared, and new algorithms for using these tuning diagnosis methods for iterative retuning of PI controllers are proposed and investigated using simulation studies. The results of these latter studies highlight the possible problem of loop instability when retuning based upon the diagnoses provided by data-based measures.
    Control Engineering Practice 01/2014; 29:23–41. · 1.67 Impact Factor
  • Source
    Kris Villez, Venkat Venkatasubramanian, Raghunathan Rengaswamy
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work, we present a generalized method for analysis of data series based on shape constraint spline fitting which constitutes the first step towards a statistically optimal method for qualitative analysis of trends. The presented method is based on a branch-and-bound (B&B) algorithm which is applied for globally optimal fitting of a spline function subject to shape constraints. More specifically, the B&B algorithm searches for optimal argument values in which the sign of the fitted function and/or one or more of its derivatives change. We derive upper and lower bounding procedures for the B&B algorithm to effi-ciently converge to the global optimum. These bounds are based on existing so-lutions for shape constraint spline estimation via Second Order Cone Programs (SOCPs). The presented method is demonstrated with three different examples which are indicative of both the strengths and weaknesses of this method.
    Computers & Chemical Engineering 06/2013; · 2.09 Impact Factor
  • Jeevan Maddala, Raghunathan Rengaswamy
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to actively control the spatial and temporal dynamics of droplets in microfluidic networks can be harnessed for several applications. Achieving such control is nontrivial due to the nonlinear and interactive nature of such systems, where droplets in different branches of the network can affect each other through resistive signalling. In our previous work we have demonstrated the application of a Model Predictive Control (MPC) framework for sort-synchronization in a simple microfluidic loop device, assuming that the final control elements are elastomeric valves. In this paper, we explore the ability of the MPC framework for more intricate control, where the relative drop distances at the exit of a loop are required to conform to desired profiles. We demonstrate that through appropriate MPC objective function choices, a variety of digital signals based on the relative exit distance can be generated. The importance of such control is highlighted.
    Journal of Process Control 02/2013; 23(2):132–139. · 2.18 Impact Factor
  • R. Rengaswamy, S. Narasimhan, V. Kuppuraj
    [Show abstract] [Hide abstract]
    ABSTRACT: This technical note presents a new Receding-horizon Nonlinear Kalman (RNK) filter for state estimation in nonlinear systems with state constraints. Such problems appear in almost all engineering disciplines. Unlike the Moving Horizon Estimation (MHE) approach, the RNK Filter formulation follows the Kalman Filter (KF) predictor-corrector framework. The corrector step is solved as an optimization problem that handles constraints effectively. The performance improvement and robustness of the proposed estimator vis-a-vis the extended Kalman filter (EKF) are demonstrated through nonlinear examples. These examples also demonstrate the computational advantages of the proposed approach over the MHE formulation. The computational gain is due to the fact that the proposed RNK formulation avoids the repeated integration within an optimization loop that is required in an MHE formulation. Further, the proposed formulation results in a quadratic program (QP) problem for the corrector step when the measurement model is linear, irrespective of the state propagation model. In contrast, a nonlinear programming problem (NLP) needs to be solved when an MHE formulation is used for such problems. Also, the proposed filter for unconstrained linear systems results in a KF estimate for the current instant and smoothed estimates for the other instants of the receding horizon.
    IEEE Transactions on Automatic Control 01/2013; 58(8):2054-2059. · 2.72 Impact Factor
  • K. Villez, R. Rengaswamy
    [Show abstract] [Hide abstract]
    ABSTRACT: Most of the existing methods for qualitative trend analysis are based on discriminative models. A disadvantage of such models is that many heuristic rules or local search methods are needed. Recently, an effort has been made to develop a globally optimal method for qualitative trend analysis. This method is based on a generative (rather than discriminative) model and has shown to lead to excellent performance. However, this method comes at an extreme computational demand which renders the methods unlikely for on-line application. In this work, an alternative method, while still generative in nature, is proposed which is shown to deliver the same performance while reducing the computational demand considerably.
    Control Conference (ECC), 2013 European; 01/2013
  • Source
    Jeevan Maddala, Siva A. Vanapalli, Raghunathan Rengaswamy
    [Show abstract] [Hide abstract]
    ABSTRACT: Droplets moving in a microfluidic loop device exhibit both periodic and chaotic behaviors based on the inlet droplet spacing. We propose that the periodic behavior is an outcome of a dispersed phase conservation principle. This conservation principle translates into a droplet spacing conservation equation. Additionally, we define a simple technique to identify periodicity in experimental systems with input scatter. Aperiodic behavior is observed in the transition regions between different periodic behaviors. We propose that the cause for aperiodicity is the synchronization of timing between the droplets entering and leaving the system. We derive an analytical expression to estimate the occurrence of these transition regions as a function of system parameters. We provide experimental, simulation and analytical results to validate the proposed theory.
    12/2012;
  • S. Babji, U. Nallasivam, R. Rengaswamy
    [Show abstract] [Hide abstract]
    ABSTRACT: In a single-input single-output (SISO) closed-loop system, under constant or nonoscillatory set-point, oscillations in the output can occur mainly because of one or a combination of the following reasons: (i) presence of stiction in control valve, (ii) marginally stable control loops (because of aggressively tuned controller/changes in process time constant/gain/time delays or a combination of them), and (iii) disturbances external to the loop. The presence of these oscillations can propagate plant-wide and force plants to deviate from optimal operating conditions. Therefore, it is essential to develop techniques that can diagnose the source of oscillations in control loops. Several data-driven methods have been developed to address the diagnosis problem by focusing on only one of the causes for oscillations. In the current study, an off-line data driven approach is developed to identify the root cause for oscillations in control loops using the routine plant operating data. Unlike the existing techniques, this approach identifies and distinguishes between the three major causes for oscillations in linear closed loop systems. The proposed methodology combines both parametric (Hammerstein-based approach) and nonparametric (Hilbert–Huang spectrum) schemes for performing oscillation diagnosis. Simulation and industrial case studies that demonstrate the utility and limitations of the proposed method for root cause diagnosis in closed loop systems are discussed.
    Industrial & Engineering Chemistry Research. 10/2012; 51(42):13712–13731.
  • B. Srinivasan, R. Rengaswamy
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that oscillations are a major cause for inferior product quality and productivity losses. Understanding the nature and the phenomena that underlie the oscillations is the first step in mitigating their effect on plant performance. Industrial reality is that multiple oscillations are generally present in the data due to several underlying sources. Detection of oscillations and identification of their time periods are difficult due to the presence of noise in data that might lead to spurious peaks in the power spectrum of the process output. This problem of oscillation detection has received much attention in the literature in recent years. In this paper, an oscillation detection approach that is based on processing of the intrinsic modes that are identified by the sieving process of Empirical Mode Decomposition (EMD) is proposed. The advantages of the proposed method are: (i) ability to detect the presence of single/multiple oscillations and identify their time periods, (ii) ability to provide the amplitude of oscillations, (iii) robustness to noise, (iv) capability to handle nonstationary trends and, (v) ability to provide information about dominant and weak oscillatory modes in the process data. Simulation studies demonstrate the robustness of the proposed approach to noise and its ability to characterize multiple oscillations in the process output. Results obtained from this approach on various industrial case studies are promising and seem to indicate that the proposed technique can be readily implemented in industrial environment.
    Control Engineering Practice 08/2012; 20(8):733–746. · 1.67 Impact Factor
  • B. Srinivasan, T. Spinner, R. Rengaswamy
    [Show abstract] [Hide abstract]
    ABSTRACT: A new index is developed for assessing the performance of a single-input single-output (SISO) linear feedback control loop. The proposed metric is a specific scaling of the generalized Hurst exponent, computed through the method of detrended fluctuation analysis (DFA). We refer to this scaled exponent as the Hurst index. The new method compares favorably with the widely used minimum variance index (MVI), with both indices showing similar trends under changes in controller tunings during closed-loop simulations. The main advantage of the Hurst index over the MVI and other existing performance measures is that its determination does not require a priori knowledge of any loop parameters. Instead, computation of the index relies solely upon process output data collected during routine plant operation. Therefore, this new technique could potentially allow engineers to more efficiently identify problematic control loops.
    Automatica. 07/2012; 48(7):1359–1363.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transport of confined droplets in fluidic networks can lead to complex spatiotemporal dynamics, precluding full control of the position of droplets in the network. Here, we report the design of a model-based feedback controller that can actively regulate droplet positions in a network. We specifically consider droplet dynamics in a microfluidic loop where a main channel splits into two and recombines. Consistent with previous studies, we find that without active control, the dynamics of droplets in the loop can range from periodic to chaotic behaviors. However, by implementing the model-based feedback controller, we show that the droplets can be made to sort alternately into the branches of the loop as well as to synchronize the times at which pairs of droplets exit the loop. In particular, our computations demonstrate that the controller is capable of executing remarkable droplet sort-synchronization tasks in the otherwise chaotic dynamics in the loop. The design of our controller incorporates a hydrodynamic network model, that is, capable of predicting droplet positions and subsequently delivering an actuation to the branches in the loop through elastomeric valves. Efficacy of the controller is discussed in terms of actuation characteristics and constraints imposed by elastomeric valves. The model-based feedback controller framework presented in this study is likely to promote the development of lab-on-chip technologies in which droplet manipulation tasks are executed with active control. © 2011 American Institute of Chemical Engineers AIChE J, 2012
    AIChE Journal 07/2012; 58(7). · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nonlinear constrained state estimation is an important task in performance monitoring, online optimization and control. There has been recent interest in developing estimators based on the idea of unscented transformation for constrained nonlinear systems. One of these approaches is the unscented recursive nonlinear dynamic data reconciliation (URNDDR) method. The URNDDR approach follows the traditional predictor-corrector framework. Constraints are handled in the prediction step through a projection algorithm and in the correction step through an optimization formulation. It has been shown that URNDDR produces very accurate estimates at the cost of computational expense. However, there are two issues that need to be addressed in the URNDDR framework: (i) URNDDR approach was primarily developed to handle bound constraints and needs to be enhanced to handle general nonlinear equality and inequality constraints, and (ii) computational concerns in the application of the URNDDR approach needs to be addressed. In this paper, a new estimation technique named constrained unscented recursive estimator (CURE) is proposed, which eliminates these disadvantages of URNDDR, while providing estimates with almost the same accuracy.
    Journal of Process Control 04/2012; 22(4):718–728. · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Traditional polymer electrolyte membrane fuel cells (PEMFCs) are planar. High cost and low gravimetric and volumetric power densities are two major issues with the planar design. To improve the gravimetric and volumetric power densities of the PEMFCs and to reduce the cost, a novel cylindrical PEMFC design has been developed. The performance of the air-breathing cylindrical PEMFC is found to be superior to a state-of-the-art planar cell in the high current density region. To understand the effect of various design parameters and operating conditions on the performance of the cylindrical PEMFC, two-dimensional, two-phase, steady-state models of the cylindrical cell for both air-breathing and pressurized conditions have been developed in this work. The developed model of the air-breathing cylindrical PEMFC is validated with in-house experimental data. Experiments were conducted with hydrogen on the anode side and air on the cathode side. The cathode catalyst layer is modeled using spherical agglomerate characterization. With the developed model, the effects of various operating and design parameters on the performance of the cell are studied. These studies show that the performance of the cylindrical cell can be further improved by optimizing these parameters.
    Industrial & Engineering Chemistry Research. 03/2012; 51(13):5003–5010.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the dynamics of pairs of drops in microfluidic ladder networks with slanted bypasses, which break the fore-aft structural symmetry. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative drop spacing, enabling them to contract, synchronize, expand, or even flip at the ladder exit. Our experiments confirm all these behaviors predicted by theory. Numerical analysis further shows that while ladder networks containing several identical bypasses are limited to nearly linear transformation of input delay between drops, mixed combination of bypasses can cause significant non-linear transformation enabling coding and decoding of input delays.
    Microfluidics and Nanofluidics 11/2011; 14(1-2). · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The primary objective in solving optimal input design problems is to obtain maximally informative inputs to be used as perturbation signals in system identification experiments. In plant-friendly identification, the designer has to respect constraints on experiment time, input and output amplitudes or input move sizes. This work focuses on plant friendly input design with constraints on input move size and output power. We present a convex relaxation to the problem of designing an informative input subject to input move size and output power constraints. The problem is finitely parametrized using ideas from Tchebycheff systems and reformulated as a SemiDefinite Programme.
    Industrial & Engineering Chemistry Research. 10/2011; 50(23).
  • S. Narasimhan, R. Rengaswamy
    [Show abstract] [Hide abstract]
    ABSTRACT: A common practice in a system identification exercise is to perturb the system of interest and use the resulting data to build a model. The problem of interest in this contribution is to synthesize an input signal that is maximally informative for generating good quality models while being “plant friendly,” i.e., least hostile to plant operation. In this contribution, limits on input move sizes are the plant friendly specifications. The resulting optimization problem is nonlinear and nonconvex. Hence, the original plant friendly input design problem is relaxed which results in a convex optimization problem. We formulate a SemiDefinite Programme using the theory of generalized Tchebysheff inequalities to derive tight bounds on the quality of relaxation. Simulations show that the relaxation results in more plant friendly input signals.
    IEEE Transactions on Automatic Control 07/2011; · 2.72 Impact Factor

Publication Stats

2k Citations
106.76 Total Impact Points

Institutions

  • 2009–2014
    • Texas Tech University
      • Department of Chemical Engineering
      Lubbock, Texas, United States
  • 2001–2011
    • Clarkson University
      • Department of Chemical and Biomolecular Engineering Coulter School
      Potsdam, NY, United States
  • 1995–2010
    • Purdue University
      • School of Chemical Engineering
      West Lafayette, IN, United States
  • 2000–2001
    • Indian Institute of Technology Bombay
      • Department of Chemical Engineering
      Mumbai, Mahārāshtra, India