Ofer Pasternak

Harvard University, Cambridge, Massachusetts, United States

Are you Ofer Pasternak?

Claim your profile

Publications (51)169.87 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffusion weighted imaging (DWI) has been extensively used to study the microarchitecture of white matter in schizophrenia. However, popular DWI-derived measures such as fractional anisotropy (FA) may be sensitive to many types of pathologies, and thus the interpretation of reported differences in these measures remains difficult. Combining DWI with magnetization transfer ratio (MTR) – a putative measure of white matter myelination – can help us reveal the underlying mechanisms. Previous findings hypothesized that MTR differences in schizophrenia are associated with free water concentrations, which also affect the DWIs. In this study we use a recently proposed DWI-derived method called free-water imaging to assess this hypothesis. We have reanalyzed data from a previous study by using a fiber-based analysis of free-water imaging, providing a free-water fraction, as well as mean diffusivity and FA corrected for free-water, in addition to MTR along twelve major white matter fiber bundles in 40 schizophrenia patients and 40 healthy controls. We tested for group differences in each fiber bundle and for each measure separately and computed correlations between the MTR and the DWI-derived measures separately for both groups. Significant higher average MTR values in patients were found for the right uncinate fasciculus, the right arcuate fasciculus and the right inferior-frontal occipital fasciculus. No significant results were found for the other measures. No significant differences in correlations were found between MTR and the DWI-derived measures. The results suggest that MTR and free-water imaging measures can be considered complementary, promoting the acquisition of MTR in addition to DWI to identify group differences, as well as to better understand the underlying mechanisms in schizophrenia.
    Schizophrenia Research 10/2014; · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current research on concussion is primarily focused on injury identification and treatment. Prevention initiatives are, however, important for reducing the incidence of brain injury. This report examines the development and implementation of an interactive electronic teaching program (an e-module) that is designed specifically for concussion education within an adolescent population. This learning tool and the accompanying consolidation rubric demonstrate that significant engagement occurs in addition to the knowledge gained among participants when it is used in a school curriculum setting.
    Journal of Neurosurgery 10/2014; · 3.23 Impact Factor
  • Lauren J O'Donnell, Ofer Pasternak
    [Show abstract] [Hide abstract]
    ABSTRACT: One key pitfall in diffusion magnetic resonance imaging (dMRI) clinical neuroimaging research is the challenge of understanding and interpreting the results of a complex analysis pipeline. The sophisticated algorithms employed by the analysis software, combined with the relatively non-specific nature of many diffusion measurements, lead to challenges in interpretation of the results. This paper is aimed at an intended audience of clinical researchers who are learning about dMRI or trying to interpret dMRI results, and who may be wondering "Does dMRI tell us anything about the white matter?" We present a critical review of dMRI methods and measures used in clinical neuroimaging research, focusing on the most commonly used analysis methods and the most commonly reported measures. We describe important pitfalls in every section, and provide extensive references for the reader interested in more detail.
    Schizophrenia Research 09/2014; · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Brain atrophy in subjects with mild cognitive impairment (MCI) introduces partial volume effects, limiting the sensitivity of diffusion tensor imaging to white matter microstructural degeneration. Appropriate correction isolates microstructural effects in MCI that might be precursors of Alzheimer's disease (AD). Methods Forty-eight participants (18 MCI, 15 AD, and 15 healthy controls) had magnetic resonance imaging scans and clinical evaluations at baseline and follow-up after 36 months. Ten MCI subjects were diagnosed with AD at follow-up and eight remained MCI. Free-water (FW) corrected measures on the white matter skeleton were compared between groups. Results FW corrected radial diffusivity, but not uncorrected radial diffusivity, was increased across the brain of the converted group compared with the nonconverted group (P < .05). The extent of increases was similar to that found comparing AD with controls. Conclusion Partial volume elimination reveals microstructural alterations preceding dementia. These alterations may prove to be an effective and feasible early biomarker of AD.
    Alzheimer's and Dementia 07/2014; · 17.47 Impact Factor
  • Source
    Ofer Pasternak, Martha Shenton, Paul Echlin
    Journal of Neurosurgery 06/2014; · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a cohort of community-recruited elderly subjects with normal cognition at initial evaluation, we found that baseline fornix white matter (WM) microstructure was significantly correlated with early volumetric longitudinal tissue change across a region of interest (called fornix significant ROI, fSROI), which overlaps circuits known to be selectively vulnerable to Alzheimer's dementia pathology. Other WM and gray matter regions had much weaker or non-existent associations with longitudinal tissue change. Tissue loss in fSROI was in turn a significant factor in a survival model of cognitive decline, as was baseline fornix microstructure. These findings suggest that WM deterioration in the fornix and tissue loss in fSROI may be the early beginnings of posterior limbic circuit and default mode network degeneration. We also found that gray matter baseline volumes in the entorhinal cortex and hippocampus predicted cognitive decline in survival models. But since GM regions did not also significantly predict brain-tissue loss, our results may imply a view in which early, prodromal deterioration appears as two quasi independent processes in white and gray matter regions of the limbic circuit crucial to memory.
    Frontiers in Aging Neuroscience 05/2014; 6:106. · 2.84 Impact Factor
  • ISMRM, Milan, Italy; 05/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Object Concussion is a common injury in ice hockey and a health problem for the general population. Traumatic axonal injury has been associated with concussions (also referred to as mild traumatic brain injuries), yet the pathological course that leads from injury to recovery or to long-term sequelae is still not known. This study investigated the longitudinal course of concussion by comparing diffusion MRI (dMRI) scans of the brains of ice hockey players before and after a concussion. Methods The 2011-2012 Hockey Concussion Education Project followed 45 university-level ice hockey players (both male and female) during a single Canadian Interuniversity Sports season. Of these, 38 players had usable dMRI scans obtained in the preseason. During the season, 11 players suffered a concussion, and 7 of these 11 players had usable dMRI scans that were taken within 72 hours of injury. To analyze the data, the authors performed free-water imaging, which reflects an increase in specificity over other dMRI analysis methods by identifying alterations that occur in the extracellular space compared with those that occur in proximity to cellular tissue in the white matter. They used an individualized approach to identify alterations that are spatially heterogeneous, as is expected in concussions. Results Paired comparison of the concussed players before and after injury revealed a statistically significant (p < 0.05) common pattern of reduced free-water volume and reduced axial and radial diffusivities following elimination of free-water. These free-water-corrected measures are less affected by partial volumes containing extracellular water and are therefore more specific to processes that occur within the brain tissue. Fractional anisotropy was significantly increased, but this change was no longer significant following the free-water elimination. Conclusions Concussion during ice hockey games results in microstructural alterations that are detectable using dMRI. The alterations that the authors found suggest decreased extracellular space and decreased diffusivities in white matter tissue. This finding might be explained by swelling and/or by increased cellularity of glia cells. Even though these findings in and of themselves cannot determine whether the observed microstructural alterations are related to long-term pathology or persistent symptoms, they are important nonetheless because they establish a clearer picture of how the brain responds to concussion.
    Journal of Neurosurgery 02/2014; · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Object Concussion, or mild traumatic brain injury (mTBI), is a commonly occurring sports-related injury, especially in contact sports such as hockey. Cerebral microbleeds (CMBs), which appear as small, hypointense lesions on T2*-weighted images, can result from TBI. The authors use susceptibility-weighted imaging (SWI) to automatically detect small hypointensities that may be subtle signs of chronic and acute damage due to both subconcussive and concussive injury. The goal was to investigate how the burden of these hypointensities changes over time, over a playing season, and postconcussion, in comparison with subjects who did not suffer a medically observed and diagnosed concussion. Methods Images were obtained in 45 university-level adult male and female ice hockey players before and after a single Canadian Interuniversity Sports season. In addition, 11 subjects (5 men and 6 women) underwent imaging at 72 hours, 2 weeks, and 2 months after concussion. To identify subtle changes in brain tissue and potential CMBs, nonvessel clusters of hypointensities on SWI were automatically identified, and a hypointensity burden index was calculated for all subjects at the beginning of the season (BOS), the end of the season (EOS), and at postconcussion time points (where applicable). Results A statistically significant increase in the hypointensity burden, relative to the BOS, was observed for male subjects with concussions at the 2-week postconcussion time point. A smaller, nonsignificant rise in the burden for female subjects with concussions was also observed within the same time period. There were no significant changes in burden for nonconcussed subjects of either sex between the BOS and EOS time points. However, there was a statistically significant difference in the burden between male and female subjects in the nonconcussed group at both the BOS and EOS time points, with males having a higher burden. Conclusions This method extends the utility of SWI from the enhancement and detection of larger (> 5 mm) CMBs, which are often observed in more severe cases of TBI, to cases involving smaller lesions in which visual detection of injury is difficult. The hypointensity burden metric proposed here shows statistically significant changes over time in the male subjects. A smaller, nonsignificant increase in the burden metric was observed in the female subjects.
    Journal of Neurosurgery 02/2014; · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Object The aim of this study was to examine the brain's white matter microstructure by using MR diffusion tensor imaging (DTI) in ice hockey players with a history of clinically symptomatic concussion compared with players without a history of concussion. Methods Sixteen players with a history of concussion (concussed group; mean age 21.7 ± 1.5 years; 6 female) and 18 players without a history of concussion (nonconcussed group; mean age 21.3 ± 1.8 years, 10 female) underwent 3-T DTI at the end of the 2011-2012 Canadian Interuniversity Sports ice hockey season. Tract-based spatial statistics (TBSS) was used to test for group differences in fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and the measure "trace," or mean diffusivity. Cognitive evaluation was performed using the Immediate Postconcussion Assessment and Cognitive Test (ImPACT) and the Sport Concussion Assessment Tool-2 (SCAT2). Results TBSS revealed a significant increase in FA and AD, and a significant decrease in RD and trace in several brain regions in the concussed group, compared with the nonconcussed group (p < 0.05). The regions with increased FA and decreased RD and trace included the right posterior limb of the internal capsule, the right corona radiata, and the right temporal lobe. Increased AD was observed in a small area in the left corona radiata. The DTI measures correlated with neither the ImPACT nor the SCAT2 scores. Conclusions The results of the current study indicate that a history of concussion may result in alterations of the brain's white matter microstructure in ice hockey players. Increased FA based on decreased RD may reflect neuroinflammatory or neuroplastic processes of the brain responding to brain trauma. Future studies are needed that include a longitudinal analysis of the brain's structure and function following a concussion to elucidate further the complex time course of DTI changes and their clinical meaning.
    Journal of Neurosurgery 01/2014; · 3.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In a previous study we have demonstrated, using a novel diffusion MRI analysis called free-water imaging, that the early stages of schizophrenia are more likely associated with a neuroinflammatory response and less so with a white matter deterioration or a demyelination process. What is not known is how neuroinflammation and white matter deterioration change along the progression of the disorder. In this study we apply the free-water measures on a population of 29 chronic schizophrenia subjects and compare them with 25 matching controls. Our aim was to compare the extent of free-water imaging abnormalities in chronic subjects with the ones previously obtained for subjects at their first psychotic episode. We find that chronic subjects showed a limited extent of abnormal increase in the volume of the extracellular space, suggesting a less extensive neuroinflammatory response relative to patients at the onset of schizophrenia. At the same time, the chronic schizophrenia subjects had greater extent of reduced fractional anisotropy compared to the previous study, suggesting increased white matter deterioration along the progression of the disease. Our findings substantiate the role of neuroinflammation in the earlier stages of the disorder, and the effect of neurodegeneration that is worsening in the chronic phase.
    Schizophrenia Research 01/2014; · 4.43 Impact Factor
  • Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data, 01/2014: pages 249-270; Springer.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sports-related concussions are one of the major causes of mild traumatic brain injury. Although most patients recover completely within days to weeks, those who experience repetitive brain trauma (RBT) may be at risk for developing a condition known as chronic traumatic encephalopathy (CTE). While this condition is most commonly observed in athletes who experience repetitive concussive and/or subconcussive blows to the head, such as boxers, football players, or hockey players, CTE may also affect soldiers on active duty. Currently, the only means by which to diagnose CTE is by the presence of phosphorylated tau aggregations post-mortem. Non-invasive neuroimaging, however, may allow early diagnosis as well as improve our understanding of the underlying pathophysiology of RBT. The purpose of this article is to review advanced neuroimaging methods used to investigate RBT, including diffusion tensor imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, susceptibility weighted imaging, and positron emission tomography. While there is a considerable literature using these methods in brain injury in general, the focus of this review is on RBT and those subject populations currently known to be susceptible to RBT, namely athletes and soldiers. Further, while direct detection of CTE in vivo has not yet been achieved, all of the methods described in this review provide insight into RBT and will likely lead to a better characterization (diagnosis), in vivo, of CTE than measures of self-report.
    Alzheimer's Research and Therapy 01/2014; 6(1):10. · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In traditional diffusion MRI, short pulsed field gradients (PFG) are used for the diffusion encoding. The standard Stejskal-Tanner sequence uses one single pair of such gradients, known as single-PFG (sPFG). In this work we describe how trajectories in q-space can be used for diffusion encoding. We discuss how such encoding enables the extension of the well-known scalar b-value to a tensor-valued entity we call the diffusion measurement tensor. The new measurements contain information about higher order diffusion propagator covariances not present in sPFG. As an example analysis, we use this new information to estimate a Gaussian distribution over diffusion tensors in each voxel, described by its mean (a diffusion tensor) and its covariance (a 4th order tensor).
    Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, Edited by Golland, Polina and Hata, Nobuhiko and Barillot, Christian and Hornegger, Joachim and Howe, Robert, 01/2014: pages 209-216; Springer International Publishing., ISBN: 9783319104423
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many studies have observed altered neurofunctional and structural organization in the aging brain. These observations from functional neuroimaging studies show a shift in brain activity from the posterior to the anterior regions with aging (PASA model), as well as a decrease in cortical thickness, which is more pronounced in the frontal lobe followed by the parietal, occipital, and temporal lobes (retrogenesis model). However, very little work has been done using diffusion MRI (dMRI) with respect to examining the structural tissue alterations underlying these neurofunctional changes in the gray matter. Thus, for the first time, we propose to examine gray matter changes using diffusion MRI in the context of aging. In this work, we propose a novel dMRI based measure of gray matter “heterogeneity” that elucidates these functional and structural models (PASA and retrogenesis) of aging from the viewpoint of diffusion MRI. In a cohort of 85 subjects (all males, ages 15–55 years), we show very high correlation between age and “heterogeneity” (a measure of structural layout of tissue in a region-of-interest) in specific brain regions. We examine gray matter alterations by grouping brain regions into anatomical lobes as well as functional zones. Our findings from dMRI data connects the functional and structural domains and confirms the “retrogenesis” hypothesis of gray matter alterations while lending support to the neurofunctional PASA model of aging in addition to showing the preservation of paralimbic areas during healthy aging. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.
    Human Brain Mapping 12/2013; 35(8). · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A significant percentage of individuals diagnosed with mild traumatic brain injury (mTBI) experience persistent post-concussive symptoms (PPCS). Little is known about the pathology of these symptoms and there is often no radiological evidence based on conventional clinical imaging. We aimed to utilize methods to evaluate microstructural tissue changes and to determine whether or not a link with PPCS was present. A novel analysis method was developed to identify abnormalities in high-resolution diffusion tensor imaging (DTI) when the location of brain injury is heterogeneous across subjects. A normative atlas with 145 brain regions of interest (ROI) was built from 47 normal controls. Comparing each subject's diffusion measures to the atlas generated subject-specific profiles of injury. Abnormal ROIs were defined by absolute z-score values above a given threshold. The method was applied to 11 PPCS patients following mTBI and 11 matched controls. Z-score information for each individual was summarized with two location-independent measures: "load" (number of abnormal regions) and "severity" (largest absolute z-score). Group differences were then computed using Wilcoxon rank sum tests. Results showed statistically significantly higher load (p = 0.018) and severity (p = 0.006) for fractional anisotropy (FA) in patients compared with controls. Subject-specific profiles of injury evinced abnormally high FA regions in gray matter (30 occurrences over 11 patients), and abnormally low FA in white matter (3 occurrences over 11 subjects). Subject-specific profiles provide important information regarding the pathology associated with PPCS. Increased gray matter (GM) anisotropy is a novel in-vivo finding, which is consistent with an animal model of brain trauma that associates increased FA in GM with pathologies such as gliosis. In addition, the individualized analysis shows promise for enhancing the clinical care of PPCS patients as it could play a role in the diagnosis of brain injury not revealed using conventional imaging.
    PLoS ONE 06/2013; 8(6):e66205. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The study of individuals at clinical high risk (CHR) for psychosis provides an important opportunity for unraveling pathological mechanisms underlying schizophrenia and related disorders. A small number of diffusion tensor magnetic resonance imaging (DTI) studies in CHR samples have yielded anatomically inconsistent results. The present study is the first to apply tract-based spatial statistics (TBSS) to perform a whole-brain DTI analysis in CHR subjects. Methods: A total of 28 individuals meeting CHR criteria and 34 healthy controls underwent DTI. TBSS was used for a group comparison of fractional anisotropy (FA), as well as axial, radial, and mean diffusivity (AD, RD, and MD). Conversion to psychosis was monitored during a mean follow-up period of 12.3 months. Results: The rate of conversion to psychosis was relatively low (4%). TBSS revealed increased MD in several clusters in the right hemisphere, most notably in the superior longitudinal fasciculus (SLF), posterior corona radiata, and corpus callosum (splenium and body). Increased RD was restricted to a smaller area in the posterior parietal lobe. Conclusion: We present further evidence that white matter microstructure is abnormal in CHR individuals, even in a sample in which the vast majority do not transition to psychosis over the following year. In accord with previous studies on CHR individuals and patients with early-onset schizophrenia, our findings suggest an important pathological role for the parietal lobe and especially the SLF. The latter is known to undergo particularly dynamic microstructural changes during adolescence and early adulthood, a critical phase for the development of psychotic illness.
    Schizophrenia Bulletin 06/2013; · 8.61 Impact Factor
  • Source
  • Source
  • Source

Publication Stats

874 Citations
169.87 Total Impact Points

Institutions

  • 2014
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2011–2014
    • Harvard Medical School
      • • Department of Psychiatry
      • • Department of Radiology
      Boston, Massachusetts, United States
  • 2005–2013
    • Tel Aviv University
      • • Department of Neurobiology
      • • Faculty of Life Sciences
      • • Department of Computer Science
      Tel Aviv, Tel Aviv, Israel
  • 2012
    • Brigham and Women's Hospital
      • Department of Medicine
      Boston, MA, United States
  • 2010
    • Eunice Kennedy Shriver National Institute of Child Health and Human Development
      Maryland, United States