Shuqiang Zhang

Nantong University, Tungchow, Jiangsu Sheng, China

Are you Shuqiang Zhang?

Claim your profile

Publications (4)14.86 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Peripheral sensory and motor nerves have different functions and different approaches to regeneration, especially their distinct ability to accurately reinervate terminal nerve pathways. To understand the molecular aspects underlying these differences, the proteomics technique by coupling isobaric tags for relative and absolute quantitation (iTRAQ) with online two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) was used to investigate the protein profile of sensory and motor nerve samples from rats. A total of 1472 proteins were identified in either sensory or motor nerve. Of them, 100 proteins showed differential expressions between both nerves, and some of them were validated by quantitative real time RT-PCR, Western blot analysis, and immunohistochemistry. In the light of functional categorization, the differentially expressed proteins in sensory and motor nerves, belonging to a broad range of classes, were related to a diverse array of biological functions, which included cell adhesion, cytoskeleton, neuronal plasticity, neurotrophic activity, calcium-binding, signal transduction, transport, enzyme catalysis, lipid metabolism, DNA-binding, synaptosome function, actin-binding, ATP-binding, extracellular matrix, and commitment to other lineages. The relatively higher expressed proteins in either sensory or motor nerve were tentatively discussed in combination with their specific molecular characteristics. It is anticipated that the database generated in this study will provide a solid foundation for further comprehensive investigation of functional differences between sensory and motor nerves, including the specificity of their regeneration.
    Journal of Proteome Research 05/2012; · 5.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schwann cells (SCs) are the principal glial cells of the peripheral nervous system (PNS). As a result of tissue heterogeneity and difficulties in the isolation and culture of primary SCs, a considerable understanding of SC biology is obtained from SC lines. However, the differences between the primary SCs and SC lines remain uncertain. In the present study, quantitative proteomic analysis based on isobaric tags for relative and absolute quantitation (iTRAQ) labeling was conducted to obtain an unbiased view of the proteomic profiles of primary rat SCs and RSC96, a spontaneously immortalized rat SC line. Out of 1757 identified proteins (FDR < 1%), 1702 were quantified, while 61 and 78 were found to be, respectively, up- or down-regulated (90% confidence interval) in RSC96. Bioinformatics analysis indicated the unique features of spontaneous immortalization, illustrated the dedifferentiated state of RSC96, and highlighted a panel of novel proteins associated with cell adhesion and migration including CADM4, FERMT2, and MCAM. Selected proteomic data and the requirement of these novel proteins in SC adhesion and migration were properly validated. Taken together, our data collectively revealed proteome differences between primary SCs and RSC96, validated several differentially expressed proteins with potential biological significance, and generated a database that may serve as a useful resource for studies of SC biology and pathology.
    Journal of Proteome Research 04/2012; · 5.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schwann cells (SCs) are the principal glial cells of the peripheral nervous system with a wide range of biological functions. SCs play a key role in peripheral nerve regeneration and are involved in several hereditary peripheral neuropathies. The objective of this study was to gain new insight into the whole protein composition of SCs. Two-dimensional liquid chromatography coupled with tandem mass spectrometry (2D LC-MS/MS) was performed to identify the protein expressions in primary cultured SCs of rats. We identified a total of 1,232 proteins, which were categorized into 20 functional classes. We also used quantitative real time RT-PCR and Western blot analysis to validate some of proteomics-identified proteins. We showed for the first time the proteome map of SCs. Our data could serve as a reference library to provide basic information for understanding SC biology.
    Proteome Science 03/2012; 10(1):20. · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salidroside, a phenol glycoside of plant origin, has been documented to possess a broad spectrum of pharmacological properties, including protective effects against neuronal death induced by different insults. To provide further insights into the neuroprotective functions peculiar to salidroside, this study used primary cultured cortical neurons of rats as a cell model to examine whether salidroside was able to prevent against cell damage after exposure to cobalt chloride (CoCl(2)), a hypoxia-inducing agent. The data from 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test, Hoechst33342 staining, terminal deoxynucleotidyl transferase dUTP-mediated nicked end labeling assay, and Bax/Bcl-2 ratio analysis indicated that salidroside pretreatment attenuated hypoxia-induced apoptotic cell death of primary cultured cortical neurons in a dose-dependent manner. Moreover, preliminary exploration of the possible mechanisms suggested that the protective effects of salidroside, shown in our experimental setting, might probably be mediated by enhancing the expression of hypoxia-inducible factor-1α, alleviating the increase of intracellular reactive oxygen species levels, and inhibiting over-expression of nuclear factor-kappa B protein.
    Molecular and Cellular Biochemistry 04/2011; 354(1-2):161-70. · 2.33 Impact Factor