Allen Ka Loon Cheung

The University of Hong Kong, Hong Kong, Hong Kong

Are you Allen Ka Loon Cheung?

Claim your profile

Publications (5)36.25 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We recently reported the identification of Δ42PD1, a novel alternatively spliced isoform of human PD1 that induces the production of pro-inflammatory cytokines from human peripheral blood mononuclear cells and enhances HIV-specific CD8(+) T cell immunity in mice when engineered in a fusion DNA vaccine. The detailed functional study of Δ42PD1, however, has been hampered due to the lack of a specific monoclonal antibody (mAb). In this study, we generated two high-affinity mAbs, clones CH34 (IgG2b) and CH101 (IgG1), from Δ42PD1-immunized mice. They recognize distinct domains of Δ42PD1 as determined by a yeast surface-displaying assay and ELISA. Moreover, they recognize native Δ42PD1 specifically, but not PD1, on cell surfaces by both flow cytometry and immunohistochemical assays. Δ42PD1 appeared to be expressed constitutively on healthy human CD14(+) monocytes, but its level of expression was down-regulated significantly during chronic HIV-1 infection. Since the level of Δ42PD1 expression on CD14(+) monocytes was negatively correlated with the CD4 count of untreated patients in a cross-sectional study, Δ42PD1 may play a role in HIV-1 pathogenesis. Lastly, when examining Δ42PD1 expression in human esophageal squamous-cell carcinoma tissues, we found high-level expression of Δ42PD1 on a subset of tumor-infiltrating T cells. Our study, therefore, resulted in two Δ42PD1-specific mAbs that can be used to further investigate Δ42PD1, a novel immune regulatory protein implicated in HIV-1 and tumor pathogenesis as well as other immune diseases.
    mAbs 02/2015; 7(3). DOI:10.1080/19420862.2015.1016695 · 4.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eradicating malignant tumor by vaccine-elicited host immunity remains a major medical challenge. To date, correlates of immune protection remain unknown for malignant mesothelioma. In this study, we demonstrated that antigen-specific CD8+ T cell immune response correlates with the elimination of malignant mesothelioma by a model PD-1-based DNA vaccine. Unlike the non-protective tumor antigen WT1-based DNA vaccines, the model vaccine showed complete and long-lasting protection against lethal mesothelioma challenge in immunocompetent BALB/c mice. Furthermore, it remained highly immunogenic in tumor-bearing animals and led to therapeutic cure of pre-existing mesothelioma. T cell depletion and adoptive transfer experiments revealed that vaccine-elicited CD8+ T cells conferred to the protective efficacy in a dose-dependent way. Also, these CD8+ T cells functioned by releasing inflammatory IFN-γ and TNF-α in the vicinity of target cells as well as by initiating TRAIL-directed tumor cell apoptosis. Importantly, repeated DNA vaccinations, a major advantage over live-vectored vaccines with issues of pre-existing immunity, achieve an active functional state not only preventing the rise of exhausted PD-1+ and Tim-3+ CD8+ T cells but also suppressing tumor-induced MDSCs and Treg cells, with the frequency of antigen-specific CD8+ T cells inversely correlating with tumor mass. Our results provide new insights into quantitative and qualitative requirements of vaccine-elicited functional CD8+ T cells in cancer prevention and immunotherapy.
    Cancer Research 08/2014; 74(21). DOI:10.1158/0008-5472.CAN-14-0473 · 9.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Viral vector-based vaccines that induce protective CD8+ T cell immunity can prevent or control pathogenic SIV infections, but issues of preexisting immunity and safety have impeded their implementation in HIV-1. Here, we report the development of what we believe to be a novel antigen-targeting DNA vaccine strategy that exploits the binding of programmed death-1 (PD1) to its ligands expressed on dendritic cells (DCs) by fusing soluble PD1 with HIV-1 GAG p24 antigen. As compared with non-DC-targeting vaccines, intramuscular immunization via electroporation (EP) of the fusion DNA in mice elicited consistently high frequencies of GAG-specific, broadly reactive, polyfunctional, long-lived, and cytotoxic CD8+ T cells and robust anti-GAG antibody titers. Vaccination conferred remarkable protection against mucosal challenge with vaccinia GAG viruses. Soluble PD1-based vaccination potentiated CD8+ T cell responses by enhancing antigen binding and uptake in DCs and activation in the draining lymph node. It also increased IL-12-producing DCs and engaged antigen cross-presentation when compared with anti-DEC205 antibody-mediated DC targeting. The high frequency of durable and protective GAG-specific CD8+ T cell immunity induced by soluble PD1-based vaccination suggests that PD1-based DNA vaccines could potentially be used against HIV-1 and other pathogens.
    The Journal of clinical investigation 05/2013; 123(6). DOI:10.1172/JCI64704 · 13.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regardless of the route of transmission, R5-tropic HIV-1 predominates early in infection, rendering C-C chemokine receptor type 5 (CCR5) antagonists as attractive agents not only for antiretroviral therapy but also for prevention. Here, we report the specificity, potency, and underlying mechanism of action of a novel small molecule CCR5 antagonist, TD-0680. TD-0680 displayed the greatest potency against a diverse group of R5-tropic HIV-1 and SIV strains when compared with its prodrug, TD-0232, the Food and Drug Administration-approved CCR5 antagonist Maraviroc, and TAK-779, with EC(50) values in the subnanomolar range (0.09-2.29 nm). Importantly, TD-0680 was equally potent at blocking envelope-mediated cell-cell fusion and cell-mediated viral transmission as well as the replication of a TAK-779/Maraviroc-resistant HIV-1 variant. Interestingly, TD-0232 and TD-0680 functioned differently despite binding to a similar transmembrane pocket of CCR5. Site-directed mutagenesis, drug combination, and antibody blocking assays identified a novel mechanism of action of TD-0680. In addition to binding to the transmembrane pocket, the unique exo configuration of this molecule protrudes and sterically blocks access to the extracellular loop 2 (ECL2) region of CCR5, thereby interrupting the interaction between virus and its co-receptor more effectively. This mechanism of action was supported by the observations of similar TD-0680 potency against CD4-dependent and -independent SIV strains and by molecular docking analysis using a CCR5 model. TD-0680, therefore, merits development as an anti-HIV-1 agent for therapeutic purposes and/or as a topical microbicide for the prevention of sexual transmission of R5-tropic HIV-1.
    Journal of Biological Chemistry 03/2012; 287(20):16499-509. DOI:10.1074/jbc.M112.354084 · 4.57 Impact Factor

  • Journal of Biological Chemistry 03/2012; · 4.57 Impact Factor