Are you W van der Houven van Oordt?

Claim your profile

Publications (3)25.65 Total impact

  • R Smits, W van der Houven van Oordt, A Luz, C Zurcher, S Jagmohan-Changur, C Breukel, P M Khan, R Fodde
    [Show abstract] [Hide abstract]
    ABSTRACT: Germline mutations in the adenomatous polyposis coli (APC) gene are responsible for familial adenomatous polyposis (FAP), an autosomal dominant predisposition to the formation of multiple colorectal adenomas. Moreover, patients with FAP are at high risk of developing several extracolonic manifestations, including desmoids, cutaneous cysts, and tumors of the upper gastrointestinal tract. Although by definition desmoids are nonmalignant, because of their aggressive invasion of local structures, they represent one of the major causes of morbidity and mortality among patients with FAP. This study describes the histopathologic and molecular characterization of Apc1638N, a mouse model for the broad spectrum of extracolonic manifestations characteristic of FAP. Heterozygous Apc+/Apc1638N animals develop fully penetrant and multifocal cutaneous follicular cysts and desmoid tumors in addition to attenuated polyposis of the upper gastrointestinal tract. Moreover, breeding of Apc+/Apc1638N mice in a p53-deficient background results in a dramatic seven-fold increase of the desmoid multiplicity. Because of the attenuated nature of their intestinal phenotype, these mice survive longer than other murine models for Apc-driven tumorigenesis. Therefore, Apc1638N represents an ideal laboratory tool to test various therapeutic intervention strategies for the management of intestinal as well as extraintestinal tumors.
    Gastroenterology 02/1998; 114(2):275-83. · 12.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently reported the identification of a mouse cDNA encoding a new p53-associating protein that we called Mdmx because of its structural similarity to Mdm2, a well-known p53-binding protein. Here we report the isolation of a cDNA encoding the human homolog of Mdmx. The ORF of the cDNA encodes a protein of 490 amino acids, 90% similar to mouse Mdmx. The homology between Mdmx and Mdm2 is most prominent in the p53-binding domain and the putative metal-binding domains. The Mdmx protein, which, based on SDS-PAGE, has a MW of 80 kDa, can bind p53 in vitro. The human MDMX gene is transcribed in all tissues tested, with high levels in thymus. By fluorescence in situ hybridization analysis we mapped the mouse mdmx gene to chromosome 1 (region F-G) and the human MDMX gene to chromosome 1q32.
    Genomics 08/1997; 43(1):34-42. · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here we report the isolation of a cDNA encoding a new p53-associating protein. This new protein has been called MDMX on the basis of its structural similarity to MDM2, which is especially notable in the p53-binding domain. In addition, the putative metal binding domains in the C-terminal part of MDM2 are completely conserved in MDMX. The middle part of the MDMX and MDM2 proteins shows a low degree of conservation. We can show by co-immunoprecipitation that the MDMX protein interacts specifically with p53 in vivo. This interaction probably occurs with the N-terminal part of p53, because the activity of the transcription activation domain of p53 was inhibited by co-transfection of MDMX. Northern blotting showed that MDMX, like MDM2, is expressed in all tissues tested, and that several mRNAs for MDMX can be detected. Interestingly, the level of MDMX mRNA is unchanged after UV irradiation, in contrast to MDM2 transcription. This observation suggests that MDMX may be a differently regulated modifier of p53 activity in comparison with MDM2. Our study indicates that at least one additional member of the MDM protein family exists which can modulate p53 function.
    The EMBO Journal 11/1996; 15(19):5349-57. · 9.82 Impact Factor