Benjamin Clasie

Massachusetts General Hospital, Boston, MA, United States

Are you Benjamin Clasie?

Claim your profile

Publications (8)21.06 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to quantify the dose from neutrons to a patient for contemporary radiation treatment techniques, measurements inside phantoms, representing the patient, are necessary. Published reports on neutron dose measurements cover measurements performed free in air or on the surface of phantoms and the doses are expressed in terms of personal dose equivalent or ambient dose equivalent. This study focuses on measurements of local neutron doses inside a radiotherapy phantom and presents a field calibration procedure for PADC track etch detectors. An initial absolute calibration factor in terms of Hp(10)Hp(10) for personal dosimetry is converted into neutron dose equivalent and additional calibration factors are derived to account for the spectral changes in the neutron fluence for different radiation therapy beam qualities and depths in the phantom. The neutron spectra used for the calculation of the calibration factors are determined in different depths by Monte Carlo simulations for the investigated radiation qualities. These spectra are used together with the energy dependent response function of the PADC detectors to account for the spectral changes in the neutron fluence. The resulting total calibration factors are 0.76 for a photon beam (in- and out-of-field), 1.00 (in-field) and 0.84 (out-of-field) for an active proton beam and 1.05 (in-field) and 0.91 (out-of-field) for a passive proton beam, respectively. The uncertainty for neutron dose measurements using this field calibration method is less than 40%.The extended calibration procedure presented in this work showed that it is possible to use PADC track etch detectors for measurements of local neutron dose equivalent inside anthropomorphic phantoms by accounting for spectral changes in the neutron fluence.
    Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 12/2012; 694:205–210. · 1.14 Impact Factor
  • Benjamin M Clasie, Jacob B Flanz, Hanne M Kooy
    [Show abstract] [Hide abstract]
    ABSTRACT: Treatment planning databases for pencil beam scanning can be large, difficult to manage and problematic for quality assurance when they contain tabulated Bragg peaks at small range resolution. Smaller range resolution, in the absence of an accurate interpolation method, improves the accuracy in dose calculations. In this work, we derive an approximate scaling function to interpolate between tabulated Bragg peaks, and determine the accuracy of this interpolation technique and the minimum number of tabulated peaks in a treatment planning database. With the new interpolation technique, three tabulated mono-energetic Bragg peaks (N = 3) are a suitable lower limit for N to achieve interpolation accuracy better than ±1% of the maximum dose in pristine and spread out Bragg peaks for ranges between 6.8 and 32.1 cm of water.
    Physics in Medicine and Biology 10/2012; 57(21):N405-9. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The γ-index is used routinely to establish correspondence between two dose distributions. The definition of the γ-index can be written with a single equation but solving this equation at millions of points is computationally expensive, especially in three dimensions. Our goal is to extend the vector-equation method in Bakai et al (2003 Phys. Med. Biol.48 3543-53) to higher order for better accuracy and, as important, to determine the magnitude of accuracy in a higher order solution. We construct a numerical framework for calculating the γ-index in two and three dimensions and present an efficient method for calculating the γ-index with zeroth-, first- and second-order methods using tricubic spline interpolation. For an intensity-modulated radiation therapy example with 1.78 × 10(6) voxels, the zeroth-order, first-order, first-order iterations and semi-second-order methods calculate the three-dimensional γ-index in 1.5, 4.7, 34.7 and 35.6 s with 36.7%, 1.1%, 0.2% and 0.8% accuracy, respectively. The accuracy of linear interpolation with this example is 1.0%. We present efficient numerical methods for calculating the three-dimensional γ-index with tricubic spline interpolation. The first-order method with iterations is the most accurate and fastest choice of the numerical methods if the dose distributions may have large second-order gradients. Furthermore, the difference between iterations can be used to determine the accuracy of the method.
    Physics in Medicine and Biology 10/2012; 57(21):6981-97. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study is aimed at identifying the potential benefits of using a patient-specific aperture in proton beam scanning. For this purpose, an accurate Monte Carlo model of the pencil beam scanning (PBS) proton therapy (PT) treatment head at Massachusetts General Hospital (MGH) was developed based on an existing model of the passive double-scattering (DS) system. The Monte Carlo code specifies the treatment head at MGH with sub-millimeter accuracy. The code was configured based on the results of experimental measurements performed at MGH. This model was then used to compare out-of-field doses in simulated DS treatments and PBS treatments. For the conditions explored, the penumbra in PBS is wider than in DS, leading to higher absorbed doses and equivalent doses adjacent to the primary field edge. For lateral distances greater than 10 cm from the field edge, the doses in PBS appear to be lower than those observed for DS. We found that placing a patient-specific aperture at nozzle exit during PBS treatments can potentially reduce doses lateral to the primary radiation field by over an order of magnitude. In conclusion, using a patient-specific aperture has the potential to further improve the normal tissue sparing capabilities of PBS.
    Physics in Medicine and Biology 04/2012; 57(10):2829-42. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proton, as well as other ion, beams applied by electro-magnetic deflection in pencil-beam scanning (PBS) are minimally perturbed and thus can be quantified a priori by their fundamental interactions in a medium. This a priori quantification permits an optimal reduction of characterizing measurements on a particular PBS delivery system. The combination of a priori quantification and measurements will then suffice to fully describe the physical interactions necessary for treatment planning purposes. We consider, for proton beams, these interactions and derive a 'Golden' beam data set. The Golden beam data set quantifies the pristine Bragg peak depth-dose distribution in terms of primary, multiple Coulomb scatter, and secondary, nuclear scatter, components. The set reduces the required measurements on a PBS delivery system to the measurement of energy spread and initial phase space as a function of energy. The depth doses are described in absolute units of Gy(RBE) mm² Gp⁻¹, where Gp equals 10⁹ (giga) protons, thus providing a direct mapping from treatment planning parameters to integrated beam current. We used these Golden beam data on our PBS delivery systems and demonstrated that they yield absolute dosimetry well within clinical tolerance.
    Physics in Medicine and Biology 03/2012; 57(5):1147-58. · 2.70 Impact Factor
  • Benjamin Clasie, Harald Paganetti, Hanne Kooy
    Proton Therapy Physics. Series: Series in Medical Physics and Biomedical Engineering, ISBN: 978-1-4398-3644-6. CRC Press, Edited by Harald Paganetti, pp. 381-412. 12/2011;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We completed an implementation of pencil-beam scanning (PBS), a technology whereby a focused beam of protons, of variable intensity and energy, is scanned over a plane perpendicular to the beam axis and in depth. The aim of radiotherapy is to improve the target to healthy tissue dose differential. We illustrate how PBS achieves this aim in a patient with a bulky tumor. Our first deployment of PBS uses "broad" pencil-beams ranging from 20 to 35 mm (full-width-half-maximum) over the range interval from 32 to 7 g/cm(2). Such beam-brushes offer a unique opportunity for treating bulky tumors. We present a case study of a large (4,295 cc clinical target volume) retroperitoneal sarcoma treated to 50.4 Gy relative biological effectiveness (RBE) (presurgery) using a course of photons and protons to the clinical target volume and a course of protons to the gross target volume. We describe our system and present the dosimetry for all courses and provide an interdosimetric comparison. The use of PBS for bulky targets reduces the complexity of treatment planning and delivery compared with collimated proton fields. In addition, PBS obviates, especially for cases as presented here, the significant cost incurred in the construction of field-specific hardware. PBS offers improved dose distributions, reduced treatment time, and reduced cost of treatment.
    International journal of radiation oncology, biology, physics 02/2010; 76(2):624-30. · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Evaluate the rationale for the proposals that prior to a wider use of proton radiation therapy there must be supporting data from phase III clinical trials. That is, would less dose to normal tissues be an advantage to the patient? Assess the basis for the assertion that proton dose distributions are superior to those of photons for most situations. Consider the requirements for determining the risks of normal tissue injury, acute and remote, in the examination of the data from a trial. Analyze the probable cost differential between high technology photon and proton therapy. Evaluate the rationale for phase III clinical trials of proton vs photon radiation therapy when the only difference in dose delivered is a difference in distribution of low LET radiation. The distributions of biological effective dose by protons are superior to those by X-rays for most clinical situations, viz. for a defined dose and dose distribution to the target by protons there is a lower dose to non-target tissues. This superiority is due to these physical properties of protons: (1) protons have a finite range and that range is exclusively dependent on the initial energy and the density distribution along the beam path; (2) the Bragg peak; (3) the proton energy distribution may be designed to provide a spread out Bragg peak that yields a uniform dose across the target volume and virtually zero dose deep to the target. Importantly, proton and photon treatment plans can employ beams in the same number and directions (coplanar, non-co-planar), utilize intensity modulation and employ 4D image guided techniques. Thus, the only difference between protons and photons is the distribution of biologically effective dose and this difference can be readily evaluated and quantified. Additionally, this dose distribution advantage should increase the tolerance of certain chemotherapeutic agents and thus permit higher drug doses. The cost of service (not developmental) proton therapy performed in 3-5 gantry centers operating 14-16 h/day and 6 days/week is likely to be equal to or less than twice that of high technology X-ray therapy. Proton therapy provides superior distributions of low LET radiation dose relative to that by photon therapy for treatment of a large proportion of tumor/normal tissue situations. Our assessment is that there is no medical rationale for clinical trials of protons as they deliver lower biologically effective doses to non-target tissue than do photons for a specified dose and dose distribution to the target. Based on present knowledge, there will be some gain for patients treated by proton beam techniques. This is so even though quantitation of the clinical gain is less secure than the quantitation of reduction in physical dose. Were proton therapy less expensive than X-ray therapy, there would be no interest in conducting phase III trails. The talent, effort and funds required to conduct phase III clinical trials of protons vs photons would surely be more productive in the advancement of radiation oncology if employed to investigate real problems, e.g. the most effective total dose, dose fractionation, definition of CTV and GTV, means for reduction of PTV and the gains and risks of combined modality therapy.
    Radiotherapy and Oncology 03/2008; 86(2):148-53. · 4.52 Impact Factor