Judith Campisi

Buck Institute for Research on Aging, Novato, California, United States

Are you Judith Campisi?

Claim your profile

Publications (213)1674.5 Total impact

  • Christopher Wiley, Judith Campisi
    The EMBO Journal 06/2014; · 9.82 Impact Factor
  • Claudio Franceschi, Judith Campisi
    [Show abstract] [Hide abstract]
    ABSTRACT: Human aging is characterized by a chronic, low-grade inflammation, and this phenomenon has been termed as "inflammaging." Inflammaging is a highly significant risk factor for both morbidity and mortality in the elderly people, as most if not all age-related diseases share an inflammatory pathogenesis. Nevertheless, the precise etiology of inflammaging and its potential causal role in contributing to adverse health outcomes remain largely unknown. The identification of pathways that control age-related inflammation across multiple systems is therefore important in order to understand whether treatments that modulate inflammaging may be beneficial in old people. The session on inflammation of the Advances in Gerosciences meeting held at the National Institutes of Health/National Institute on Aging in Bethesda on October 30 and 31, 2013 was aimed at defining these important unanswered questions about inflammaging. This article reports the main outcomes of this session.
    The Journals of Gerontology Series A Biological Sciences and Medical Sciences 06/2014; 69 Suppl 1:S4-9. · 4.31 Impact Factor
  • Christopher Wiley, Judith Campisi
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss of the coenzyme NAD+, which is required for many energy-dependent cellular processes, has emerged as a potentially unifying mechanism for age-related conditions. A study in this issue of The EMBO Journal identifies a novel link between depletion of NAD+ and age-associated loss of proliferating adult neural stem/progenitor cells in the murine brain (Stein & Imai, ). These data have important implications for how brain function might decline with age.
    The EMBO Journal 05/2014; · 9.82 Impact Factor
  • Judith Campisi
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies in mice and humans suggest that cellular senescence, the cessation of cell proliferation that is known to suppress cancer and promote ageing, may have evolved to regulate embryonic development.
    Nature 12/2013; · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular senescence irreversibly arrests proliferation in response to potentially oncogenic stress. Senescent cells also secrete inflammatory cytokines such as IL-6, which promote age-associated inflammation and pathology. HMGB1 (high mobility group box 1) modulates gene expression in the nucleus, but certain immune cells secrete HMGB1 as an extracellular Alarmin to signal tissue damage. We show that nuclear HMGB1 relocalized to the extracellular milieu in senescent human and mouse cells in culture and in vivo. In contrast to cytokine secretion, HMGB1 redistribution required the p53 tumor suppressor, but not its activator ATM. Moreover, altered HMGB1 expression induced a p53-dependent senescent growth arrest. Senescent fibroblasts secreted oxidized HMGB1, which stimulated cytokine secretion through TLR-4 signaling. HMGB1 depletion, HMGB1 blocking antibody, or TLR-4 inhibition attenuated senescence-associated IL-6 secretion, and exogenous HMGB1 stimulated NF-κB activity and restored IL-6 secretion to HMGB1-depleted cells. Our findings identify senescence as a novel biological setting in which HMGB1 functions and link HMGB1 redistribution to p53 activity and senescence-associated inflammation.
    The Journal of Cell Biology 05/2013; · 10.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to environmental toxins is associated with a variety of age-related diseases including cancer and neurodegeneration. For example, in Parkinson's disease (PD), chronic environmental exposure to certain toxins has been linked to the age-related development of neuropathology. Neuronal damage is believed to involve the induction of neuroinflammatory events as a consequence of glial cell activation. Cellular senescence is a potent anti-cancer mechanism that occurs in a number of proliferative cell types and causes the arrest of proliferation of cells at risk of malignant transformation following exposure to potentially oncogenic stimuli. With age, senescent cells accumulate and express a senescence-associated secretory phenotype (SASP; that is the robust secretion of many inflammatory cytokines, growth factors and proteases). Whereas cell senescence in peripheral tissues has been causally linked to a number of age-related pathologies, little is known about the induction of cellular senescence and the SASP in the brain. On the basis of recently reported findings, we propose that environmental stressors associated with PD may act in part by eliciting senescence and the SASP within non neuronal glial cells in the ageing brain, thus contributing to the characteristic decline in neuronal integrity that occurs in this disorder.
    Journal of Internal Medicine 05/2013; 273(5):429-36. · 6.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aging is the largest risk factor for most chronic diseases, which account for the majority of morbidity and health care expenditures in developed nations. New findings suggest that aging is a modifiable risk factor, and it may be feasible to delay age-related diseases as a group by modulating fundamental aging mechanisms. One such mechanism is cellular senescence, which can cause chronic inflammation through the senescence-associated secretory phenotype (SASP). We review the mechanisms that induce senescence and the SASP, their associations with chronic disease and frailty, therapeutic opportunities based on targeting senescent cells and the SASP, and potential paths to developing clinical interventions.
    The Journal of clinical investigation 03/2013; 123(3):966-72. · 15.39 Impact Factor
  • Michael C Velarde, Marco Demaria, Judith Campisi
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer is a devastating disease that increases exponentially with age. Cancer arises from cells that proliferate in an unregulated manner, an attribute that is countered by cellular senescence. Cellular senescence is a potent tumor-suppressive process that halts the proliferation, essentially irreversibly, of cells at risk for malignant transformation. A number of anti-cancer drugs have emerged that induce tumor cells to undergo cellular senescence. However, although a senescence response can halt the proliferation of cancer cells, the presence of senescent cells in tissues has been associated with age-related diseases, including, ironically, late-life cancer. Thus, anti-cancer therapies that can induce senescence might also drive aging phenotypes and age-related pathology. The deleterious effects of senescent cells most likely derive from their senescence-associated secretory phenotype or SASP. The SASP entails the secretion of numerous inflammatory cytokines, growth factors and proteases that can render the tissue microenvironment favorable for tumor growth. Here, we discuss the beneficial and detrimental effects of inducing cellular senescence, and propose strategies for targeting senescent cells as a means to fight cancer.
    Interdisciplinary topics in gerontology 01/2013; 38:17-27.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV-HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells.
    Cell Death & Disease 01/2013; 4:e727. · 6.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A balance must be struck between cell growth and stress responses to ensure that cells proliferate without accumulating damaged DNA. This balance means that optimal cell proliferation requires the integration of pro-growth and stress-response pathways. mTOR (mechanistic target of rapamycin) is a pleiotropic kinase found in complex 1 (mTORC1). The mTORC1 pathway governs a response to mitogenic signals with high energy levels to promote protein synthesis and cell growth. In contrast, the p53 DNA damage response pathway is the arbiter of cell proliferation, restraining mTORC1 under conditions of genotoxic stress. Recent studies suggest a complicated integration of these pathways to ensure successful cell growth and proliferation without compromising genome maintenance. Deciphering this integration could be key to understanding the potential clinical usefulness of mTORC1 inhibitors like rapamycin. Here we discuss how the p53-mTORC1 interactions might play a role in the suppression of cancer and perhaps the development of cellular senescence and organismal aging.
    Cell cycle (Georgetown, Tex.) 12/2012; 12(1). · 5.24 Impact Factor
  • Judith Campisi
    [Show abstract] [Hide abstract]
    ABSTRACT: For most species, aging promotes a host of degenerative pathologies that are characterized by debilitating losses of tissue or cellular function. However, especially among vertebrates, aging also promotes hyperplastic pathologies, the most deadly of which is cancer. In contrast to the loss of function that characterizes degenerating cells and tissues, malignant (cancerous) cells must acquire new (albeit aberrant) functions that allow them to develop into a lethal tumor. This review discusses the idea that, despite seemingly opposite characteristics, the degenerative and hyperplastic pathologies of aging are at least partly linked by a common biological phenomenon: a cellular stress response known as cellular senescence. The senescence response is widely recognized as a potent tumor suppressive mechanism. However, recent evidence strengthens the idea that it also drives both degenerative and hyperplastic pathologies, most likely by promoting chronic inflammation. Thus, the senescence response may be the result of antagonistically pleiotropic gene action. Expected final online publication date for the Annual Review of Physiology Volume 75 is February 10, 2013. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Physiology 11/2012; · 19.55 Impact Factor
  • Source
    Marco Demaria, Judith Campisi
    [Show abstract] [Hide abstract]
    ABSTRACT: Thus, hypoxia appears to inhibit the transition from quiescence to senescence by a non-canonical mechanism that is independent of both p53 and HIF-1. Comment on: Leontieva OV et al. Hypoxia suppresses conversion from proliferative arrest to cellular senescence. Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13314-13318.
    Aging 08/2012; 4(8):523-4. · 4.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human embryonic stem cells (hESCs) hold promise for the treatment of many human pathologies. For example, hESCs and the neuronal stem cells (NSCs) and neurons derived from them have significant potential as transplantation therapies for a variety of neurodegenerative diseases. Two concerns about the use of hESCs and their differentiated derivatives are their ability to function and their ability to resist neoplastic transformation in response to stresses that inevitably arise during their preparation for transplantation. To begin to understand how these cells handle genotoxic stress, we examined the responses of hESCs and derived NSCs and neurons to ionizing radiation (IR). Undifferentiated hESCs were extremely sensitive to IR, with nearly all the cells undergoing cell death within 5-7h. NSCs and neurons were substantially more resistant to IR, with neurons showing the most resistant. Of interest, NSCs that survived IR underwent cellular senescence and acquired astrocytic characteristics. Unlike IR-treated astrocytes, however, the NSC-derived astrocytic cells that survived IR did not display the typical pro-inflammatory, pro-carcinogenic senescence-associated secretory phenotype. These findings suggest distinct genotoxic stress-responses of hESCs and derived NSC and neuronal populations, and suggest that damaged NSCs, while failing to function, may not cause local inflammation.
    Biochemical and Biophysical Research Communications 08/2012; 426(1):100-5. · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acquired resistance to anticancer treatments is a substantial barrier to reducing the morbidity and mortality that is attributable to malignant tumors. Components of tissue microenvironments are recognized to profoundly influence cellular phenotypes, including susceptibilities to toxic insults. Using a genome-wide analysis of transcriptional responses to genotoxic stress induced by cancer therapeutics, we identified a spectrum of secreted proteins derived from the tumor microenvironment that includes the Wnt family member wingless-type MMTV integration site family member 16B (WNT16B). We determined that WNT16B expression is regulated by nuclear factor of κ light polypeptide gene enhancer in B cells 1 (NF-κB) after DNA damage and subsequently signals in a paracrine manner to activate the canonical Wnt program in tumor cells. The expression of WNT16B in the prostate tumor microenvironment attenuated the effects of cytotoxic chemotherapy in vivo, promoting tumor cell survival and disease progression. These results delineate a mechanism by which genotoxic therapies given in a cyclical manner can enhance subsequent treatment resistance through cell nonautonomous effects that are contributed by the tumor microenvironment.
    Nature medicine 08/2012; · 27.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and play a critical role in development, homeostasis, and disease. Despite their demonstrated roles in age-associated pathologies, little is known about the role of miRNAs in human aging and longevity. RESULTS: We employed massively parallel sequencing technology to identify miRNAs expressed in B-cells from Ashkenazi Jewish centenarians, i.e., those living to a hundred and a human model of exceptional longevity, and younger controls without a family history of longevity. With data from 26.7 million reads comprising 9.4x108 bp from 3 centenarian and 3 control individuals, we discovered a total of 276 known miRNAs and 8 unknown miRNAs ranging several orders of magnitude in expression levels, a typical characteristics of saturated miRNA-sequencing. A total of 22 miRNAs were found to be significantly upregulated, with only 2 miRNAs downregulated, in centenarians as compared to controls. Gene Ontology analysis of the predicted and validated targets of the 24 differentially expressed miRNAs indicated enrichment of functional pathways involved in cell metabolism, cell cycle, cell signaling, and cell differentiation. A cross sectional expression analysis of the differentially expressed miRNAs in B-cells from Ashkenazi Jewish individuals between the 50th and 100th years of age indicated that expression levels of miR-363* declined significantly with age. Centenarians, however, maintained the youthful expression level. This result suggests that miR-363* may be a candidate longevity-associated miRNA. CONCLUSION: Our comprehensive miRNA data provide a resource for further studies to identify genetic pathways associated with aging and longevity in humans.
    BMC Genomics 07/2012; 13(1):353. · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ongoing revolution in aging research was manifested by the Second International Conference "Genetics of Aging and Longevity" (Moscow, April 22-25, 2012). The Conference goal was to identify the most promising areas of genetics, life expectancy, and aging, including: the search for longevity genes; the search for pharmacological agents that slow aging; the identification of biological age markers; and the identification of mechanisms by which the environment influences the aging rate.
    Aging 05/2012; 4(5):305-17. · 4.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular senescence is a potent tumor-suppressive mechanism that arrests cell proliferation and has been linked to aging. However, studies of senescence have been impeded by the lack of simple, exclusive biomarkers of the senescent state. Senescent cells develop characteristic morphological changes, which include enlarged and often irregular nuclei and chromatin reorganization. Because alterations to the nuclear lamina can affect both nuclear morphology and gene expression, we examined the nuclear lamina of senescent cells. We show here than lamin B1 is lost from primary human and murine cell strains when they are induced to senesce by DNA damage, replicative exhaustion, or oncogene expression. Lamin B1 loss did not depend on the p38 mitogen-activated protein kinase, nuclear factor-κB, ataxia telangiectasia-mutated kinase, or reactive oxygen species signaling pathways, which are positive regulators of senescent phenotypes. However, activation of either the p53 or pRB tumor suppressor pathway was sufficient to induce lamin B1 loss. Lamin B1 declined at the mRNA level via a decrease in mRNA stability rather than by the caspase-mediated degradation seen during apoptosis. Last, lamin B1 protein and mRNA declined in mouse tissue after senescence was induced by irradiation. Our findings suggest that lamin B1 loss can serve as biomarker of senescence both in culture and in vivo.
    Molecular biology of the cell 04/2012; 23(11):2066-75. · 5.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular senescence suppresses cancer by arresting the proliferation of cells at risk for malignant transformation. Recently, senescent cells were shown to secrete numerous cytokines, growth factors, and proteases that can alter the tissue microenvironment and may promote age-related pathology. To identify small molecules that suppress the senescence-associated secretory phenotype (SASP), we developed a screening protocol using normal human fibroblasts and a library of compounds that are approved for human use. Among the promising library constituents was the glucocorticoid corticosterone. Both corticosterone and the related glucocorticoid cortisol decreased the production and secretion of selected SASP components, including several pro-inflammatory cytokines. Importantly, the glucocorticoids suppressed the SASP without reverting the tumor suppressive growth arrest and were efficacious whether cells were induced to senesce by ionizing radiation or strong mitogenic signals delivered by oncogenic RAS or MAP kinase kinase 6 overexpression. Suppression of the prototypical SASP component IL-6 required the glucocorticoid receptor, which, in the presence of ligand, inhibited IL-1α signaling and NF-κB transactivation activity. Accordingly, co-treatments combining glucocorticoids with the glucocorticoid antagonist RU-486 or recombinant IL-1α efficiently reestablished NF-κB transcriptional activity and IL-6 secretion. Our findings demonstrate feasibility of screening for compounds that inhibit the effects of senescent cells. They further show that glucocorticoids inhibit selected components of the SASP and suggest that corticosterone and cortisol, two FDA-approved drugs, might exert their effects in part by suppressing senescence-associated inflammation.
    Aging cell 03/2012; 11(4):569-78. · 7.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor signal transducer and activator of transcription 3 (STAT3) acts downstream of many pro-oncogenic signals, including cytokines, growth factors and oncogenes, and is accordingly constitutively active in a wide variety of tumors that often become addicted to it. Moreover, STAT3 is a key player in mediating inflammation-driven tumorigenesis, where its aberrant continuous activation is typically triggered by local or systemic production of the pro-inflammatory cytokine IL-6. We recently showed that mouse embryonic fibroblasts (MEFs) derived from STAT3C k/in mice, which express physiological levels of the constitutively active mutant STAT3C, display features of transformed cells such as increased proliferation, resistance to apoptosis and senescence, and aerobic glycolysis. Here, we show that pre-existing constitutively active STAT3 is sufficient to prime primary MEFs for malignant transformation upon spontaneous immortalization. Transformation is strictly STAT3-dependent and correlates with high resistance to apoptosis and enhanced expression of anti-apoptotic/pro-survival genes. Additionally, hypoxia inducible factor (HIF)-1α level is elevated by twofold and contributes to STAT3 oncogenic activity by supporting high rates of aerobic glycolysis. Thus, constitutively active STAT3, an accepted essential factor for tumor growth/progression, can also act as a first hit in multistep carcinogenesis; this ability to predispose cells to malignant transformation may be particularly relevant in the pro-oncogenic niche represented by chronically inflamed tissues.
    Cell death and differentiation 03/2012; 19(8):1390-7. · 8.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroglobin (Ngb) is a hypoxia-inducible protein with cytoprotective effects in animal models of stroke, Alzheimer's disease, and related disorders, but the molecular mechanisms involved in its induction are unknown. We tested the hypothesis that hypoxia-inducible factor-1 (HIF-1) regulates Ngb levels, using shRNA-mediated knockdown and lentiviral vector-mediated overexpression of the HIF-1α subunit, in cultured neural (HN33) cells. HIF-1α knockdown decreased and HIF-1α overexpression increased Ngb levels, consistent with a connection between HIF-1 and Ngb induction. These findings may have implications for understanding the hypoxia-response repertoire of neural cells and devising therapeutic strategies for neurologic disorders.
    Neuroscience Letters 02/2012; 514(2):137-40. · 2.03 Impact Factor

Publication Stats

17k Citations
1,674.50 Total Impact Points

Institutions

  • 2003–2014
    • Buck Institute for Research on Aging
      Novato, California, United States
  • 1995–2013
    • Lawrence Berkeley National Laboratory
      • Life Sciences Division
      Berkeley, CA, United States
  • 2003–2012
    • University of Texas Health Science Center at San Antonio
      • Department of Molecular Medicine
      San Antonio, Texas, United States
  • 1992–2012
    • University of California, Berkeley
      • Department of Molecular and Cell Biology
      Berkeley, CA, United States
  • 2011
    • Centre hospitalier de l'Université de Montréal (CHUM)
      Montréal, Quebec, Canada
  • 2010
    • University of California, San Francisco
      • Department of Laboratory Medicine
      San Francisco, CA, United States
  • 2008
    • Yeshiva University
      New York City, New York, United States
  • 2007
    • University of North Carolina at Chapel Hill
      • Department of Radiation Oncology
      Chapel Hill, NC, United States
  • 2006
    • University of Texas Health Science Center at Tyler
      Tyler, Texas, United States
  • 2004
    • University of Texas MD Anderson Cancer Center
      • Department of Molecular and Cellular Oncology
      Houston, TX, United States
  • 2000–2003
    • Baylor College of Medicine
      • Huffington Center on Aging
      Houston, Texas, United States
  • 2001
    • Memorial Sloan-Kettering Cancer Center
      New York City, New York, United States
  • 1999–2001
    • California Pacific Medical Center Research Institute
      San Francisco, California, United States
  • 1991–2001
    • National Institute on Aging
      Baltimore, Maryland, United States
  • 1989–1991
    • University of Massachusetts Boston
      Boston, Massachusetts, United States
    • Harvard Medical School
      • Department of Pathology
      Boston, MA, United States
  • 1986
    • Boston University
      • Department of Biochemistry
      Boston, MA, United States
  • 1984
    • Dana-Farber Cancer Institute
      Boston, Massachusetts, United States