Jaehoon Kim

The Rockefeller University, New York City, New York, United States

Are you Jaehoon Kim?

Claim your profile

Publications (3)54.22 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence suggests that linker histone H1 can influence distinct cellular processes by acting as a gene-specific regulator. However, the mechanistic basis underlying such H1 specificity and whether H1 acts in concert with other chromatin-altering activities remain unclear. Here, we show that one of the H1 subtypes, H1.2, stably interacts with Cul4A E3 ubiquitin ligase and PAF1 elongation complexes and that such interaction potentiates target gene transcription via induction of H4K31ubiquitylation, H3K4me3, and H3K79me2. H1.2, Cul4A, and PAF1 are functionally cooperative because their individual knockdown results in the loss of the corresponding histone marks and the deficiency of target gene transcription. H1.2 interacts with the serine 2-phosphorylated form of RNAPII, and we argue that it recruits the Cul4A and PAF1 complexes to target genes by bridging the interaction between the Cul4A and PAF1 complexes. These data define an expanded role for H1 in regulating gene transcription and illustrate its dependence on the elongation competence of RNAPII.
    Cell Reports 12/2013; 5(6). DOI:10.1016/j.celrep.2013.11.038 · 8.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Viral infection is commonly associated with virus-driven hijacking of host proteins. Here we describe a novel mechanism by which influenza virus affects host cells through the interaction of influenza non-structural protein 1 (NS1) with the infected cell epigenome. We show that the NS1 protein of influenza A H3N2 subtype possesses a histone-like sequence (histone mimic) that is used by the virus to target the human PAF1 transcription elongation complex (hPAF1C). We demonstrate that binding of NS1 to hPAF1C depends on the NS1 histone mimic and results in suppression of hPAF1C-mediated transcriptional elongation. Furthermore, human PAF1 has a crucial role in the antiviral response. Loss of hPAF1C binding by NS1 attenuates influenza infection, whereas hPAF1C deficiency reduces antiviral gene expression and renders cells more susceptible to viruses. We propose that the histone mimic in NS1 enables the influenza virus to affect inducible gene expression selectively, thus contributing to suppression of the antiviral response.
    Nature 03/2012; 483(7390):428-33. DOI:10.1038/nature10892 · 41.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since data-mining from the Oncomine database revealed that expression of histone H2B K120 monoubiquitin (H2Bub1) ligase RNF20 is decreased in metastatic prostate cancer, we elucidated the effect of RNF20 and its homolog RNF40 on androgen receptor (AR)-dependent transcription and prostate cancer cell growth. Both RNF20 and RNF40 were able to functionally and physically interact with the AR and modulate its transcriptional activity in intact cells. Chromatin immunoprecipitation analyses showed that the androgen induction of FKBP51 and PSA in LNCaP prostate cancer cells is accompanied with a dynamic increase in the H2Bub1 within the transcribed regions of these loci. Interestingly, depletion of RNF20 or RNF40 strongly retarded the growth of LNCaP cells, which was however unlikely to be due to altered androgen signaling, but due to decreased expression of several cell cycle promoters. Collectively, our results suggest that RNF20 and RNF40, either via ubiquitylation of H2B or other targets, are coupled to the proliferation of prostate cancer cells.
    Molecular and Cellular Endocrinology 12/2011; 350(1):87-98. DOI:10.1016/j.mce.2011.11.025 · 4.41 Impact Factor

Publication Stats

84 Citations
54.22 Total Impact Points


  • 2011–2013
    • The Rockefeller University
      • Laboratory of Biochemistry and Molecular Biology
      New York City, New York, United States