Makiko Kashio

The Graduate University for Advanced Studies, Миура, Kanagawa, Japan

Are you Makiko Kashio?

Claim your profile

Publications (5)30.77 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the bivoltine strain of the silkworm, Bombyx mori, embryonic diapause is induced transgenerationally as a maternal effect. Progeny diapause is determined by the environmental temperature during embryonic development of the mother; however, its molecular mechanisms are largely unknown. Here, we show that the Bombyx TRPA1 ortholog (BmTrpA1) acts as a thermosensitive transient receptor potential (TRP) channel that is activated at temperatures above ∼21 °C and affects the induction of diapause in progeny. In addition, we show that embryonic RNAi of BmTrpA1 affects diapause hormone release during pupal-adult development. This study identifying a thermosensitive TRP channel that acts as a molecular switch for a relatively long-term predictive adaptive response by inducing an alternative phenotype to seasonal polyphenism is unique.
    Proceedings of the National Academy of Sciences 03/2014; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unaccustomed strenuous exercise that includes lengthening contraction (LC) often causes tenderness and movement related pain after some delay (delayed-onset muscle soreness, DOMS). We previously demonstrated that nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) are up-regulated in exercised muscle through up-regulation of cyclooxygenase (COX)-2, and they sensitized nociceptors resulting in mechanical hyperalgesia. There is also a study showing that transient receptor potential (TRP) ion channels are involved in DOMS. Here we examined whether and how TRPV1 and/or TRPV4 are involved in DOMS. We firstly evaluated a method to measure the mechanical withdrawal threshold of the deep tissues in wild-type (WT) mice with a modified Randall-Selitto apparatus. WT, TRPV1-/- and TRPV4-/- mice were then subjected to LC. Another group of mice received injection of murine NGF-2.5S or GDNF to the lateral gastrocnemius (LGC) muscle. Before and after these treatments the mechanical withdrawal threshold of LGC was evaluated. The change in expression of NGF, GDNF and COX-2 mRNA in the muscle was examined using real-time RT-PCR. In WT mice, mechanical hyperalgesia was observed 6-24 h after LC and 1-24 h after NGF and GDNF injection. LC induced mechanical hyperalgesia neither in TRPV1-/- nor in TRPV4-/- mice. NGF injection induced mechanical hyperalgesia in WT and TRPV4-/- mice but not in TRPV1-/- mice. GDNF injection induced mechanical hyperalgesia in WT but neither in TRPV1-/- nor in TRPV4-/- mice. Expression of NGF and COX-2 mRNA was significantly increased 3 h after LC in all genotypes. However, GDNF mRNA did not increase in TRPV4-/- mice. These results suggest that TRPV1 contributes to DOMS downstream (possibly at nociceptors) of NGF and GDNF, while TRPV4 is located downstream of GDNF and possibly also in the process of GDNF up-regulation.
    PLoS ONE 01/2013; 8(6):e65751. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to sense temperature is essential for organism survival and efficient metabolism. Body temperatures profoundly affect many physiological functions, including immunity. Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive, Ca(2+)-permeable cation channel expressed in a wide range of immunocytes. TRPM2 is activated by adenosine diphosphate ribose and hydrogen peroxide (H(2)O(2)), although the activation mechanism by H(2)O(2) is not well understood. Here we report a unique activation mechanism in which H(2)O(2) lowers the temperature threshold for TRPM2 activation, termed "sensitization," through Met oxidation and adenosine diphosphate ribose production. This sensitization is completely abolished by a single mutation at Met-214, indicating that the temperature threshold of TRPM2 activation is regulated by redox signals that enable channel activity at physiological body temperatures. Loss of TRPM2 attenuates zymosan-evoked macrophage functions, including cytokine release and fever-enhanced phagocytic activity. These findings suggest that redox signals sensitize TRPM2 downstream of NADPH oxidase activity and make TRPM2 active at physiological body temperature, leading to increased cytosolic Ca(2+) concentrations. Our results suggest that TRPM2 sensitization plays important roles in macrophage functions.
    Proceedings of the National Academy of Sciences 04/2012; 109(17):6745-50. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The state of the skin changes drastically depending on the ambient temperature. Skin epidermal keratinocytes express thermosensitive transient receptor potential vanilloid (TRPV) cation channels, TRPV3 and TRPV4. These multimodal receptors are activated by various kinds of chemical and physical stimuli, including warm temperatures (>30°C). It has been suggested that TRPV4 is involved in cell-cell junction maturation; however, the effect of temperature fluctuations on TRPV4-dependent barrier homeostasis is unclear. In the present study, we demonstrated that activation of TRPV4 was crucial for barrier formation and recovery, both of which were critical for the prevention of excess dehydration of human skin keratinocytes. TRPV4 activation by physiological skin temperature (33°C), GSK1016790A or 4α-PDD allowed influx of Ca(2+) from extracellular spaces which promoted cell-cell junction development. These changes resulted in augmentation of intercellular barrier integrity in vitro and ex vivo. TRPV4 disruption reduced the increase in trans-epidermal resistance and increased intercellular permeation after a Ca(2+) switch. Furthermore, barrier recovery after the disruption of the stratum corneum was accelerated by the activation of TRPV4 either by warm temperature or a chemical activator. Our results suggest that physiological skin temperatures play important roles in cell-cell junction and skin barrier homeostasis through TRPV4 activation.
    Pflügers Archiv - European Journal of Physiology 02/2012; 463(5):715-25. · 4.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most of the terpenoids with an alpha,beta-unsaturated 1,4-dialdehyde moiety, which are found in plants, fungi, and insects, have a pungent taste. However, the neural receptors responsible for the pungency of these terpenoids have not been identified yet. The transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1), which are expressed in the nociceptive neurons, induce a sensation of heat on activation by some pungent ingredients in food. In this study, we selected miogadial (MD), miogatrial (MT), and polygodial (PG) from the terpenoids with an alpha,beta-unsaturated 1,4-dialdehyde moiety and examined the effects of these 3 terpenoids on TRPA1 or TRPV1. TRPV1 and TRPA1 activity by 3 terpenoids were evaluated using Ca(2+) imaging and patch-clamp methods in mammalian cells that express TRP heterologously and mouse sensory neurons. The 3 terpenoids activated TRPA1 that was heterologously expressed in HEK293 or CHO cells. The potencies of activation by the 3 terpenoids were equal and almost 10 times stronger than that of allyl isothiocyanate (AITC), which is known as the most potent TRPA1 agonist among all natural products. Moreover, these 3 terpenoids exhibited increased intracellular Ca(2+) concentration in mouse sensory neuron cells compared to AITC. High concentrations of the 3 terpenoids also activated TRPV1 that was heterologously expressed in HEK293 cells. These results indicated that MD, MT, and PG were more potent in activating TRPA1 than TRPV1, and suggested that they primarily activate TRPA1 to induce pungency.
    Life sciences 06/2009; 85(1-2):60-9. · 2.56 Impact Factor

Publication Stats

29 Citations
30.77 Total Impact Points

Institutions

  • 2009–2013
    • The Graduate University for Advanced Studies
      • • Division of Cell Signaling
      • • Department of Physiological Sciences
      Миура, Kanagawa, Japan
  • 2012
    • National Institutes Of Natural Sciences
      Edo, Tōkyō, Japan