Holger Lerche

University of Tuebingen, Tübingen, Baden-Württemberg, Germany

Are you Holger Lerche?

Claim your profile

Publications (208)1094.55 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: To assess efficacy/tolerability of ezogabine (EZG)/retigabine (RTG) in combination with specified monotherapy antiepileptic drug (AED) treatments in adults with uncontrolled partial-onset seizures using a flexible dosing regimen.
    Seizure 08/2015; 30. DOI:10.1016/j.seizure.2015.06.002 · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the recent years, several neurological syndromes related to defects of the glucose transporter type 1 (Glut1) have been descried. They include the glucose transporter deficiency syndrome (Glut1-DS) as the most severe form, the paroxysmal exertion-induced dyskinesia (PED), a form of spastic paraparesis (CSE) as well as the childhood (CAE) and the early-onset absence epilepsy (EOAE). Glut1, encoded by the gene SLC2A1, is the most relevant glucose transporter in the brain. All Glut1 syndromes respond well to a ketogenic diet (KD) and most of the patients show a rapid seizure control. Ketogenic Diet developed to an established treatment for other forms of pharmaco-resistant epilepsies. Since we were interested in the question if those patients might have an underlying Glut1 defect, we sequenced SLC2A1 in a cohort of 28 patients with different forms of pharmaco-resistant epilepsies responding well to a KD. Unfortunately, we could not detect any mutations in SLC2A1. The exact action mechanisms of KD in pharmaco-resistant epilepsy are not well understood, but bypassing the Glut1 transporter seems not to play an important role. Copyright © 2015 Elsevier B.V. All rights reserved.
    Epilepsy Research 08/2015; 114:47-51. DOI:10.1016/j.eplepsyres.2015.04.012 · 2.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, mutations and deletions in the GRIN2A gene have been identified to predispose to benign and severe idiopathic focal epilepsies (IFE), revealing a higher incidence of GRIN2A alterations among the more severe phenotypes. This study aimed to explore the phenotypic boundaries of GRIN2A mutations by investigating patients with the two most common epilepsy syndromes: i) idiopathic generalized epilepsy (IGE) and ii) temporal lobe epilepsy (TLE). Whole exome sequencing data of 238 patients with IGE as well as Sanger sequencing of 84 patients with TLE were evaluated for GRIN2A sequence alterations. Two additional independent cohorts comprising 1469 IGE and 330 TLE patients were screened for structural deletions (>40 kb) involving GRIN2A. Apart from a presumably benign, non-segregating variant in a patient with juvenile absence epilepsy, neither mutations nor deletions were detected in either cohort. These findings suggest that mutations in GRIN2A preferentially are involved in genetic variance of pediatric IFE and do not contribute significantly to either adult focal epilepsies as TLE or generalized epilepsies.
    Epilepsy Research 06/2015; 115. DOI:10.1016/j.eplepsyres.2015.05.010 · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes.
    PLoS Genetics 05/2015; 11(5):e1005226. DOI:10.1371/journal.pgen.1005226 · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ATP-binding cassette transporter B1 (ABCB1; P-glycoprotein; multidrug resistance protein 1) is an adenosine triphosphate (ATP)-dependent efflux transporter located in the plasma membrane of many different cell types. Numerous structurally unrelated compounds, including drugs and environmental toxins, have been identified as substrates. ABCB1 limits the absorption of xenobiotics from the gut lumen, protects sensitive tissues (e.g. the brain, fetus and testes) from xenobiotics and is involved in biliary and renal secretion of its substrates. In recent years, a large number of polymorphisms of the ABCB1 [ATP-binding cassette, sub-family B (MDR/TAP), member 1] gene have been described. The variants 1236C>T (rs1128503, p.G412G), 2677G>T/A (rs2032582, p.A893S/T) and 3435C>T (rs1045642, p.I1145I) occur at high allele frequencies and create a common haplotype; therefore, they have been most widely studied. This review provides an overview of clinical studies published between 2002 and March 2015. In summary, the effect of ABCB1 variation on P-glycoprotein expression (messenger RNA and protein expression) and/or activity in various tissues (e.g. the liver, gut and heart) appears to be small. Although polymorphisms and haplotypes of ABCB1 have been associated with alterations in drug disposition and drug response, including adverse events with various ABCB1 substrates in different ethnic populations, the results have been majorly conflicting, with limited clinical relevance. Future research activities are warranted, considering a deep-sequencing approach, as well as well-designed clinical studies with appropriate sample sizes to elucidate the impact of rare ABCB1 variants and their potential consequences for effect sizes.
    Clinical Pharmacokinetics 04/2015; DOI:10.1007/s40262-015-0267-1 · 5.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dynamic causal modelling (DCM) is a method to non-invasively assess effective connectivity between brain regions. 'Musicogenic epilepsy' is a rare reflex epilepsy syndrome in which seizures can be elicited by musical stimuli and thus represents a unique possibility to investigate complex human brain networks and test connectivity analysis tools. We investigated effective connectivity in a case of musicogenic epilepsy using DCM for fMRI, high-density (hd-) EEG and MEG and validated results with intracranial EEG recordings. A patient with musicogenic seizures was examined using hd-EEG/fMRI and simultaneous '256-channel hd-EEG'/'whole head MEG' to characterize the epileptogenic focus and propagation effects using source analysis techniques and DCM. Results were validated with invasive EEG recordings. We recorded one seizure with hd-EEG/fMRI and four auras with hd-EEG/MEG. During the seizures, increases of activity could be observed in the right mesial temporal region as well as bilateral mesial frontal regions. Effective connectivity analysis of fMRI and hd-EEG/MEG indicated that right mesial temporal neuronal activity drives changes in the frontal areas consistently in all three modalities, which was confirmed by the results of invasive EEG recordings. Seizures thus seem to originate in the right mesial temporal lobe and propagate to mesial frontal regions. Using DCM for fMRI, hd-EEG and MEG we were able to correctly localize focus and propagation of epileptic activity and thereby characterize the underlying epileptic network in a patient with musicogenic epilepsy. The concordance between all three functional modalities validated by invasive monitoring is noteworthy, both for epileptic activity spread as well as for effective connectivity analysis in general. Copyright © 2015 Elsevier Inc. All rights reserved.
    NeuroImage 03/2015; 113. DOI:10.1016/j.neuroimage.2015.03.027 · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Restless legs syndrome (RLS) is characterized by unpleasant sensations in the legs and an uncontrollable urge to move them in order to gain relief. Higher frequencies of RLS have been reported in systemic lupus, multiple sclerosis, rheumatoid arthritis and atopic dermatitis. Since the disease-related stress present in psoriasis is similar to the stress of those diseases, we aimed to study the frequency of RLS in a German cohort of patients with psoriasis. 300 patients with psoriasis and 300 healthy controls were evaluated for RLS symptoms in this study. While 17% (n = 51) of patients with psoriasis reported symptoms of RLS, only 4% (n = 12) of individuals without psoriasis suffered from RLS symptoms (95% confidence interval: 0.08 - 0.18, p<0.01). In patients with psoriasis and RLS the average RLS score was 16.0 ± 9.2 whereas individuals with RLS in the control group had an average RLS score of 13.5 ± 7.1. Our findings indicate an increased frequency of RLS in patients with psoriasis, suggesting screening patients with psoriasis for the presence of RLS as a well-treatable co-morbidity.
    03/2015; DOI:10.1684/ejd.2015.2525
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epileptic encephalopathies are a phenotypically and genetically heterogeneous group of severe epilepsies accompanied by intellectual disability and other neurodevelopmental features –6. Using next-generation sequencing, we identified four different de novo mutations in KCNA2, encoding the potassium channel K V .2, in six isolated patients with epileptic encephalopathy (one mutation recurred three times independently). Four individuals presented with febrile and multiple afebrile, often focal seizure types, multifocal epileptiform discharges strongly activated by sleep, mild to moderate intellectual disability, delayed speech development and sometimes ataxia. Functional studies of the two mutations associated with this phenotype showed almost complete loss of function with a dominant-negative effect. Two further individuals presented with a different and more severe epileptic encephalopathy phenotype. They carried mutations inducing a drastic gain-of-function effect leading to permanently open channels. These results establish KCNA2 as a new gene involved in human neurodevelopmental disorders through two different mechanisms, predicting either hyperexcitability or electrical silencing of K V .2-expressing neurons. Many of the voltage-gated potassium channels (K V 1–K V 12) are expressed in the central nervous system (CNS), having an important role in neuronal excitability and neurotransmitter release 7. Mutations in potassium channel–encoding genes cause different neurological diseases, including benign familial neonatal seizures (KCNQ2, encoding K V 7.2; KCNQ3, encoding K V 7.3) 8–10 , neonatal epileptic encephalopathy (KCNQ2) 11,12 , episodic ataxia type 1 (EA1) (KCNA1, encoding K V 1.1) 13 and peripheral nerve hyperexcitability (KCNA1, KCNQ2) 13–15. In addition, antibodies against K V 1.1 or associated proteins such as contactin-associated protein 2 (CASPR2) or leucine-rich, glioma-inactivated 1 (LGI1) cause limbic encephalitis or neuromyotonia 16. Therefore, potassium channel genes represent interesting candidates for neurodevelopmental disorders. To identify mutations in presumed genetic forms of epilepsy, we designed a targeted resequencing panel 17 comprising 265 known and 220 candidate genes for epilepsy (Supplementary Table 1). Screening a pilot cohort of 33 patients, we identified mutations in known epilepsy-related genes in 16 cases 17. We evaluated the remaining 17 cases for mutations in candidate genes (Supplementary Note), which led to the detection of a heterozygous de novo mutation in KCNA2, c.1214C>T (encoding p.Pro405Leu), affecting the highly conserved pore domain of the voltage-gated potassium channel K V 1.2 (NM_004974, CCDS827). This mutation was not present in control databases (1000 Genomes Project, Exome Variant Server (EVS), dbSNP138 or the Exome Aggregation Consortium (ExAC) database). The affected female (patient 1) carrying this mutation had unre-markable early development until the onset of epilepsy at 17 months of age. The phenotype included febrile and afebrile alternating hemiclonic seizures and status epilepticus, reminiscent of Dravet syndrome. The electroencephalogram (EEG) showed multifocal spikes with marked activation during sleep. After seizure onset, ataxia and delay of psychomotor and language development became apparent. She had postnatal short stature, growth hormone deficiency and hypothyroidism. Seizures and ataxia responded poorly to antiepileptic drugs (topiramate, oxcarbazepine, valproic acid and bromide), including acetazolamide (known to be effective in EA1 caused by mutations in KCNA1; ref. 18). At last follow-up at 8 years of age, she had remained seizure free for the past 6 months without previous change of medication. We identified further KCNA2 mutations in several parallel studies (Supplementary Fig. 1). First, we performed whole-exome sequenc-ing in 86 parent-offspring trios with epileptic encephalopathy (31 with Dravet syndrome negative for mutations in SCN1A, 39 with myoclonic-atonic epilepsy (MAE) and 16 with electrical status epi-lepticus in slow-wave sleep (ESES)). Second, we performed panel sequencing (Supplementary Note) in 147 adults with a broad spectrum of epilepsy phenotypes associated with intellectual disability. Third, we performed whole-exome sequencing in an adult cohort of 10 independent trios with severe epilepsy and intellectual disability and whole-exome sequencing in another cohort of 12 independent, isolated index cases with early-onset ataxia and epilepsy. We identified six additional independent cases with previously unre-ported heterozygous KCNA2 variants (Table 1, Supplementary Fig. 2 and Supplementary Note). Patient 2 (initially classified as having MAE) carried the de novo mutation c.788T>C (encoding p.Ile263Thr). Patient 3 (intellectual disability with neonatal-onset focal epilepsy and cerebel-lar hypoplasia) carried the variant c.440G>A (encoding p.Arg147Lys), of unknown inheritance. We considered p.Arg147Lys to be a variant of unknown relevance because (i) it could not be confirmed as de novo, (ii) it was predicted to be benign using seven of nine prediction tools, (iii) a lysine occurs naturally at this position in Drosophila melanogaster and zebrafish, and (iv) the change did not show functional consequences (Supplementary Fig. 3, Supplementary Tables 1 and 2, and Supplementary Note). Patient 4 (initially classified as having Dravet
    Nature Genetics 03/2015; · 29.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epileptic encephalopathies are a phenotypically and genetically heterogeneous group of severe epilepsies accompanied by intellectual disability and other neurodevelopmental features. Using next-generation sequencing, we identified four different de novo mutations in KCNA2, encoding the potassium channel KV1.2, in six isolated patients with epileptic encephalopathy (one mutation recurred three times independently). Four individuals presented with febrile and multiple afebrile, often focal seizure types, multifocal epileptiform discharges strongly activated by sleep, mild to moderate intellectual disability, delayed speech development and sometimes ataxia. Functional studies of the two mutations associated with this phenotype showed almost complete loss of function with a dominant-negative effect. Two further individuals presented with a different and more severe epileptic encephalopathy phenotype. They carried mutations inducing a drastic gain-of-function effect leading to permanently open channels. These results establish KCNA2 as a new gene involved in human neurodevelopmental disorders through two different mechanisms, predicting either hyperexcitability or electrical silencing of KV1.2-expressing neurons.
    Nature Genetics 03/2015; DOI:10.1038/ng.3239 · 29.65 Impact Factor
  • Holger Lerche, Edward J Novotny
    Neurology 03/2015; 84(13). DOI:10.1212/WNL.0000000000001427 · 8.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To test whether mutations in gamma-aminobutyric acid type A receptor (GABAA-R) subunit genes contribute to the etiology of Rolandic epilepsy (RE) or its atypical variants (ARE). Methods: We performed exome sequencing to compare the frequency of variants in 18 GABAA-R genes in 204 European patients with RE/ARE versus 728 platform matched controls. Identified GABRG2 variants were functionally assessed for protein stability, trafficking, postsynaptic clustering and receptor function. Results: Out of 18 screened GABAA-R genes, we detected an enrichment of rare variants in the GABRG2 gene in RE/ARE patients (5/204, 2.45%) in comparison to controls (1/723, 0.14%) (OR = 18.07, 95% CI = 2.01 – 855.07, p = 0.0024, pcorr = 0.043). We identified a GABRG2 splice variant (c.549-3T>G) in two unrelated patients as well as three nonsynonymous variations in this gene (p.G257R, p.R323Q, p.I389V). Functional assessment showed reduced surface expression of p.G257R and decreased GABA-evoked currents for p.R323Q. The p.G257R mutation displayed diminished levels of palmitoylation, a posttranslational modification crucial for trafficking of proteins to the cell membrane. Enzymatically raised palmitoylation levels restored the surface expression of the p.G257R variant γ2-subunit. Interpretation: The statistical association and the functional evidence suggest that mutations of the GABRG2 gene may increase the risk of RE/ARE. Restoring the impaired membrane trafficking of some GABRG2 mutations by enhancing palmitoylation might be an interesting therapeutic approach to reverse the pathogenic effect of such mutants. This article is protected by copyright. All rights reserved.
    Annals of Neurology 02/2015; DOI:10.1002/ana.24395 · 11.91 Impact Factor
  • Holger Lerche
    Brain 02/2015; 138(Pt 2):240-2. DOI:10.1093/brain/awu357 · 10.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported nonlinear correlations between verbal episodic memory performance and BOLD signal in memory fMRI in healthy subjects. The purpose of the present study was to examine this observation in patients with left mesial temporal lobe epilepsy (mTLE) who often experience memory decline and need reliable prediction tools before epilepsy surgery with hippocampectomy. Fifteen patients with left mTLE (18-57years, nine females) underwent a verbal memory fMRI paradigm. Correlations between BOLD activity and neuropsychological data were calculated for the i) hippocampus (HC) as well as ii) extrahippocampal mTL structures. Memory performance was systematically associated with activations within the right HC as well as with activations within the left extrahippocampal mTL regions (amygdala and parahippocampal gyrus). As hypothesized, the analyses revealed cubic relationships, with one peak in patients with marginal memory performance and another peak in patients with very good performance. The nonlinear correlations between memory performance and activations might reflect the compensatory recruitment of neural resources to maintain memory performance in patients with ongoing memory deterioration. The present data suggest an already incipient preoperative reorganization process of verbal memory in non-amnesic patients with left mTLE by simultaneously tapping the resources of the right HC and left extrahippocampal mTL regions. Thus, in the preoperative assessment, both neuropsychological performance and memory fMRI should be considered together. Copyright © 2014 Elsevier Inc. All rights reserved.
    Epilepsy & Behavior 12/2014; 42C:78-85. DOI:10.1016/j.yebeh.2014.11.026 · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progressive myoclonus epilepsies (PMEs) are a group of rare, inherited disorders manifesting with action myoclonus, tonic-clonic seizures and ataxia. We sequenced the exomes of 84 unrelated individuals with PME of unknown cause and molecularly solved 26 cases (31%). Remarkably, a recurrent de novo mutation, c.959G>A (p.Arg320His), in KCNC1 was identified as a new major cause for PME. Eleven unrelated exome-sequenced (13%) and two affected individuals in a secondary cohort (7%) had this mutation. KCNC1 encodes KV3.1, a subunit of the KV3 voltage-gated potassium ion channels, which are major determinants of high-frequency neuronal firing. Functional analysis of the Arg320His mutant channel showed a dominant-negative loss-of-function effect. Ten cases had pathogenic mutations in known PME-associated genes (NEU1, NHLRC1, AFG3L2, EPM2A, CLN6 and SERPINI1). Identification of mutations in PRNP, SACS and TBC1D24 expand their phenotypic spectra to PME. These findings provide insights into the molecular genetic basis of PME and show the role of de novo mutations in this disease entity.
  • E. M. Reinthaler, D. Lal, S. Lebon, M. S. Hildebrand, H.-H. M. Dahl, B. M. Regan, M. Feucht, H. Steinbock, B. Neophytou, G. M. Ronen, [...], F. Petit, F. Ragona, E. Rajcan-Separovic, A. Renieri, C. Rieubland, D. Sanlaville, E. Sarrazin, Y. Shen, M. van Haelst, A. V.-v. Silfhout
    Human Molecular Genetics 11/2014; 23(22):6069-6080. DOI:10.1093/hmg/ddu306 · 6.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na(+) channels in interneurons and persistent Na(+) currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca(2+) imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 11/2014; 34(45):14874-89. DOI:10.1523/JNEUROSCI.0721-14.2014 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Febrile seizures affect 2–4% of all children and have a strong genetic component. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding syntaxin-1B, that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature. Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes.
    Nature Genetics 11/2014; advance online publication. DOI:10.1038/ng.3130 · 29.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a consanguineous family with 2 affected individuals whose clinical symptoms closely resembled MERRF (myoclonus epilepsy with ragged red fibers) syndrome including severe myoclonic epilepsy, progressive spastic tetraparesis, progressive impairment of vision and hearing, as well as progressive cognitive decline.
    Neurology 10/2014; 83(23). DOI:10.1212/WNL.0000000000001055 · 8.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electroencephalography (EEG) and magnetoencephalography (MEG) are widely used to localize brain activity and their spatial resolutions have been compared in several publications. While most clinical studies demonstrated higher accuracy of MEG source localization, simulation studies suggested a more accurate EEG than MEG localization for the same number of channels. However, studies comparing real MEG and EEG data with equivalent number of channels are scarce. We investigated 14 right-handed healthy subjects performing a motor task in MEG, high-density-(hd-) EEG and fMRI as well as a somatosensory task in MEG and hd-EEG and compared source analysis results of the evoked brain activity between modalities with different head models. Using individual head models, hd-EEG localized significantly closer to the anatomical reference point obtained by fMRI than MEG. Source analysis results were least accurate for hd-EEG based on a standard head model. Further, hd-EEG and MEG localized more medially than fMRI. Localization accuracy of electric source imaging is dependent on the head model used with more accurate results obtained with individual head models. If this is taken into account, EEG localization can be more accurate than MEG localization for the same number of channels.
    Brain Topography 10/2014; 28(1). DOI:10.1007/s10548-014-0405-3 · 2.52 Impact Factor
  • Stefan Wolking, Holger Lerche

Publication Stats

5k Citations
1,094.55 Total Impact Points


  • 2011–2015
    • University of Tuebingen
      • • Hertie Institute for Clinical Brain Research
      • • Department of Neurology
      Tübingen, Baden-Württemberg, Germany
  • 2010–2015
    • Hertie-Institute for Clinical Brain Research
      Tübingen, Baden-Württemberg, Germany
    • University of Melbourne
      • Florey Institute of Neuroscience and Mental Health
      Melbourne, Victoria, Australia
  • 2010–2014
    • Universitätsklinikum Tübingen
      Tübingen, Baden-Württemberg, Germany
  • 1993–2014
    • Universität Ulm
      • • Institute of Applied Physiology
      • • Division of Neurophysiology
      • • Clinic of Neurology
      Ulm, Baden-Württemberg, Germany
  • 2013
    • University of Cologne
      • Division of Neuro-Paediatrics and Social Paedriatic Center
      Köln, North Rhine-Westphalia, Germany
  • 2009
    • University Medical Center Schleswig-Holstein
      • Department of Pediatrics
      Kiel, Schleswig-Holstein, Germany
  • 2008
    • Neurologische Klinik Westend
      Бад Вилдунген, Hesse, Germany
  • 2007
    • Humboldt-Universität zu Berlin
      Berlín, Berlin, Germany
  • 1999
    • Vanderbilt University
      Nashville, Michigan, United States