Marianne M Vieira

Universidade Federal do Piauí, Poti, Piauí, Brazil

Are you Marianne M Vieira?

Claim your profile

Publications (2)7.08 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents an industrial scale process for extraction, purification, and isolation of epiisopiloturine (EPI) (2(3H)-Furanone,dihydro-3-(hydroxyphenylmethyl)-4-[(1-methyl-1H-imidazol-4-yl)methyl]-, [3S-[3a(R*),4b]]), which is an alkaloid from jaborandi leaves (Pilocarpus microphyllus Stapf). Additionally for the first time a set of structural and spectroscopic techniques were used to characterize this alkaloid. EPI has shown schistomicidal activity against adults and young forms, as well as the reduction of the egg laying adult worms and low toxicity to mammalian cells (in vitro). At first, the extraction of EPI was done with toluene and methylene chloride to obtain a solution that was alkalinized with ammonium carbonate. The remaining solution was treated in sequence by acidification, filtration and alkalinization. These industrial procedures are necessary in order to remove impurities and subsequent application of the high performance liquid chromatography (HPLC). The HPLC was employed also to remove other alkaloids, to obtain EPI purity higher than 98%. The viability of the method was confirmed through HPLC and electrospray mass spectrometry, that yielded a pseudo molecular ion of m/z equal to 287.1 Da. EPI structure was characterized by single crystal X-ray diffraction (XRD), (1)H and (13)C nuclear magnetic resonance (NMR) in deuterated methanol/chloroform solution, vibrational spectroscopy and mass coupled thermal analyses. EPI molecule presents a parallel alignment of the benzene and the methyl imidazol ring separated by an interplanar spacing of 3.758 Å indicating a π-π bond interaction. The imidazole alkaloid melts at 225°C and decomposes above 230°C under air. EPI structure was used in theoretical Density Functional Theory calculations, considering the single crystal XRD data in order to simulate the NMR, infrared and Raman spectra of the molecule, and performs the signals attribution.
    PLoS ONE 06/2013; 8(6):e66702. DOI:10.1371/journal.pone.0066702 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schistosomiasis, caused by blood flukes of the genus Schistosoma, still imposes a considerable public health burden on large parts of the world. The control of this disease depends almost exclusively on the drug praziquantel, and there are no alternative drugs in sight. Natural compounds have recently attracted significant attention due to their relevance to parasitic infection and potential development into new therapeutic agents. Epiisopiloturine is an imidazole alkaloid isolated from the leaves of Pilocarpus microphyllus (Rutaceae), a native plant from Brazil. Here, we report the in vitro effect of this drug on the survival time of Schistosoma mansoni of different ages, such as 3 h old and 1, 3, 5, and 7 days old schistosomula, 49-day-old adults, and on egg output by adult worms. Epiisopiloturine at a concentration of 300 μg/mL caused the death of all schistosomula within 120 h. Extensive tegumental alterations and death were observed when adult schistosomes had been exposed to 150 μg/mL of the epiisopiloturine. At the highest sub-lethal dose of alkaloid (100 μg/mL), a 100% reduction in egg laying of paired adult worms was observed. Additionally, epiisopiloturine showed selective antischistosomal activity and exhibited no cytotoxicity to mammalian cells. This report provides the first evidence that epiisopiloturine is able to kill S. mansoni of different ages and inhibit worm egg laying.
    Current Medicinal Chemistry 03/2012; 19(13):2051-8. DOI:10.2174/092986712800167347 · 3.85 Impact Factor