Mario E Alburges

University of Utah, Salt Lake City, Utah, United States

Are you Mario E Alburges?

Claim your profile

Publications (5)17.31 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mephedrone (4-methymethcathinone) is a synthetic cathinone designer drug that disrupts central nervous system (CNS) dopamine (DA) signaling. Numerous central neuropeptide systems reciprocally interact with dopaminergic neurons to provide regulatory counterbalance, and are altered by aberrant DA activity associated with stimulant exposure. Endogenous opioid neuropeptides are highly concentrated within dopaminergic CNS regions and facilitate many rewarding and aversive properties associated with drug use. Dynorphin, an opioid neuropeptide and kappa receptor agonist, causes dysphoria and aversion to drug consumption through signaling within the basal ganglia and limbic systems, which is affected by stimulants. This study evaluated how mephedrone alters basal ganglia and limbic system dynorphin content, and the role of DA signaling in these changes. Repeated mephedrone administrations (4 x 25 mg/kg/injection, 2-h intervals) selectively increased dynorphin content throughout the dorsal striatum and globus pallidus, decreased dynorphin content within the frontal cortex, and did not alter dynorphin content within most limbic system structures. Pre-treatment with D1-like (SCH-23380) or D2-like (eticlopride) antagonists blocked mephedrone-induced changes in dynorphin content in most regions examined, indicating altered dynorphin activity is a consequence of excessive DA signaling. Synapse, 2014. © 2014 Wiley Periodicals, Inc.
    Synapse 08/2014; · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Administration of high doses of methamphetamine (METH) in a manner mimicking the binging patterns associated with abuse reduces NT release and causes its accumulation and elevated NT levels in extrapyramidal structures by a D1 mechanism. The relevance of these findings to the therapeutic use of METH needs to be studied. The effect of low doses (comparable to that used for therapy) of METH on basal ganglia NT systems was examined and compared to high-dose and self-administration effects previously reported. Rats were injected four times (2-h intervals) with either saline or low doses of METH (0.25, 0.50, or 1.00 mg/kg/subcutaneously (s.c.)). For the DA antagonist studies, animals were pretreated with a D1 (SCH23390) or D2 (eticlopride) antagonist 15 min prior to METH or saline treatments. Rats were sacrificed 5-48 h after the last injection. METH at doses of 0.25 and 0.50, but not 1.00 mg/kg, rapidly and briefly decreased NTLI concentration in all basal ganglia structures studied. In the posterior dorsal striatum, the reduction in NT level after low-dose METH appeared to be caused principally by D2 stimulation, but both D2 and D1 stimulation were required for the NT responses in the other basal ganglia regions. A novel finding from the present study was that opposite to abuse-mimicking high doses of METH, the therapeutically relevant low-dose METH treatment reduced NT tissue levels likely reflecting an increase in NT release and a short-term depletion of the levels of this neuropeptide in basal ganglia structures. The possible significance is discussed.
    Psychopharmacology 02/2014; · 4.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methamphetamine (METH) abuse is personally and socially devastating. Although effects of METH on dopamine (DA) systems likely contribute to its highly addictive nature, no medications are approved to treat METH dependence. Thus, we and others have studied the METH-induced responses of neurotensin (NT) systems. NT is associated with inhibitory feedback action on DA projections, and NT levels are elevated in both the nucleus accumbens and dorsal striatum after noncontingent treatment with high doses of METH. In the present study, we used a METH self-administration (SA) model (linked to lever pressing) to demonstrate that substitution of an NT agonist for METH, while not significantly affecting motor activity, dramatically reduced lever pressing but was not self-administered per se. We also found that nucleus accumbens NT levels were elevated via a D1 mechanism after five sessions in rats self-administering METH (SAM), with a lesser effect in corresponding yoked rats. Extended (15 daily sessions) exposure to METH SA manifested similar NT responses; however, more detailed analyses revealed (i) 15 days of METH SA significantly elevated NT levels in the nucleus accumbens shell and dorsal striatum, but not the nucleus accumbens core, with a lesser effect in the corresponding yoked METH rats; (ii) the elevation of NT in both the nucleus accumbens shell and dorsal striatum significantly correlated with the total amount of METH received in the self-administering, but not the corresponding yoked METH rats; and (iii) an NT agonist blocked, but an NT antagonist did not alter, lever-pressing behavior on day 15 in SAM rats. After 5 days in SAM animals, NT levels were also elevated in the ventral tegmental area, but not frontal cortex of rats self-administering METH.
    Neuroscience 02/2012; 203:99-107. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuropeptides are linked to the psychopathology of stimulants of abuse, principally through dopamine mechanisms. Substance P (SP) is one of these neuropeptides and is associated with both limbic and extrapyramidal dopaminergic pathways and likely contributes to the pharmacology of these stimulants. The effects of nicotine on these dopamine systems have also been extensively studied; however, its effects on the associated SP pathways have received little attention. In the present study, we elucidated the effects of nicotine treatment on limbic and extrapyramidal SP systems by measuring changes in associated SP tissue concentrations. Male Sprague-Dawley rats received (+/-)nicotine 4.0 mg/kg/day (0.8 mg/kg, intraperitoneally; five injections at 2-h intervals) in the presence or absence of selective dopamine D1 and D2 receptor antagonists or a nonselective nicotinic acetylcholine receptor antagonist. The nicotine treatment significantly but temporarily decreased substance P-like immunoreactivity (SPLI) content in the ventral tegmental area (VTA) and substantia nigra 12-18 h after drug exposure. The nicotine-mediated changes in SPLI were selectively blocked by pretreatment with mecamylamine as well as a dopamine D1, D2, or both receptor antagonists. Other brain areas that also selectively demonstrated nicotine-related declines in SPLI content included prefrontal cortex, the nucleus accumbens shell, and the very posterior caudate. These findings indicate that some limbic and basal ganglia SP systems are significantly affected by exposure to nicotine through processes mediated by nicotinic and dopaminergic receptors, suggesting a role for SP pathways in nicotine's limbic and extrapyramidal effects.
    Psychopharmacology 10/2008; 201(4):517-27. · 4.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the role of the protein phosphatase inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), in the expression of striatal neuropeptides and in biochemical and behavioural responses to repeated cocaine administration, using DARPP-32 knock-out mice. The striatum of DARPP-32-mutant mice showed heightened substance-P-like immunoreactivity, but normal levels of other neuropeptides. Repeated cocaine administration increased levels of DeltaFosB, a Fos family transcription factor, in the striatum of wild-type mice, and this increase was abolished in DARPP-32-mutant mice. Cocaine (20 mg/kg) acutely induced the same level of locomotor activity in the mutant and wild-type mice, but the mutants showed a higher rate of locomotor sensitization to repeated cocaine exposures. These data show that DARPP-32 is involved in regulating substance P expression in the striatonigral pathway, and in biochemical and behavioural plasticity with chronic administration of cocaine.
    European Journal of Neuroscience 04/1999; 11(3):1114-8. · 3.75 Impact Factor