Danish Saleheen

University of Pennsylvania, Filadelfia, Pennsylvania, United States

Are you Danish Saleheen?

Claim your profile

Publications (101)1365.14 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Obesity is a complex disease caused by the interplay of genetic and lifestyle factors, but identification of gene-lifestyle interactions in obesity has remained challenging. Few large-scale studies have reported use of genome-wide approaches to investigate gene-lifestyle interactions in obesity. Methods: In the PROMIS study, a cross-sectional study based in Pakistan, we calculated BMI variance estimates (square of the residual of inverse-normal transformed BMI z-score) in 14 131 participants and conducted genome-wide heterogeneity of variance analyses (GWHVA) for this outcome. All analyses were adjusted for age, age2, sex and genetic ancestry. Results: The GWHVA analyses yielded a genome-wide significance (P-value=3.1 × 10-8) association of the rs140133294 variant at FLJ33534 with BMI variance. In explicit tests of gene × lifestyle interaction, smoking was found to significantly modify the effect of rs140133294 on BMI (Pinteraction=0.0005), whereby the minor allele (T) was associated with lower BMI in current smokers, while positively associated with BMI in never-smokers. No interactions with physical activity were observed. Analyses of ENCODE data at the FLJ33534 locus revealed features indicative of open chromatin and high confidence DNA-binding motifs for several transcription factors, providing suggestive biological support for a mechanism of interaction. Conclusion: In summary, we have identified a novel interaction between smoking and variation at the FLJ33534 locus in relation to BMI in people from Pakistan.
    International Journal of Obesity 08/2015; 10.1038/ijo.2015.152. DOI:10.1038/ijo.2015.152 · 5.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Indian Asians, who make up a quarter of the world's population, are at high risk of developing type 2 diabetes. We investigated whether DNA methylation is associated with future type 2 diabetes incidence in Indian Asians and whether differences in methylation patterns between Indian Asians and Europeans are associated with, and could be used to predict, differences in the magnitude of risk of developing type 2 diabetes. We did a nested case-control study of DNA methylation in Indian Asians and Europeans with incident type 2 diabetes who were identified from the 8-year follow-up of 25 372 participants in the London Life Sciences Prospective Population (LOLIPOP) study. Patients were recruited between May 1, 2002, and Sept 12, 2008. We did epigenome-wide association analysis using samples from Indian Asians with incident type 2 diabetes and age-matched and sex-matched Indian Asian controls, followed by replication testing of top-ranking signals in Europeans. For both discovery and replication, DNA methylation was measured in the baseline blood sample, which was collected before the onset of type 2 diabetes. Epigenome-wide significance was set at p<1 × 10(-7). We compared methylation levels between Indian Asian and European controls without type 2 diabetes at baseline to estimate the potential contribution of DNA methylation to increased risk of future type 2 diabetes incidence among Indian Asians. 1608 (11·9%) of 13 535 Indian Asians and 306 (4·3%) of 7066 Europeans developed type 2 diabetes over a mean of 8·5 years (SD 1·8) of follow-up. The age-adjusted and sex-adjusted incidence of type 2 diabetes was 3·1 times (95% CI 2·8-3·6; p<0·0001) higher among Indian Asians than among Europeans, and remained 2·5 times (2·1-2·9; p<0·0001) higher after adjustment for adiposity, physical activity, family history of type 2 diabetes, and baseline glycaemic measures. The mean absolute difference in methylation level between type 2 diabetes cases and controls ranged from 0·5% (SD 0·1) to 1·1% (0·2). Methylation markers at five loci were associated with future type 2 diabetes incidence; the relative risk per 1% increase in methylation was 1·09 (95% CI 1·07-1·11; p=1·3 × 10(-17)) for ABCG1, 0·94 (0·92-0·95; p=4·2 × 10(-11)) for PHOSPHO1, 0·94 (0·92-0·96; p=1·4 × 10(-9)) for SOCS3, 1·07 (1·04-1·09; p=2·1 × 10(-10)) for SREBF1, and 0·92 (0·90-0·94; p=1·2 × 10(-17)) for TXNIP. A methylation score combining results for the five loci was associated with future type 2 diabetes incidence (relative risk quartile 4 vs quartile 1 3·51, 95% CI 2·79-4·42; p=1·3 × 10(-26)), and was independent of established risk factors. Methylation score was higher among Indian Asians than Europeans (p=1 × 10(-34)). DNA methylation might provide new insights into the pathways underlying type 2 diabetes and offer new opportunities for risk stratification and prevention of type 2 diabetes among Indian Asians. The European Union, the UK National Institute for Health Research, the Wellcome Trust, the UK Medical Research Council, Action on Hearing Loss, the UK Biotechnology and Biological Sciences Research Council, the Oak Foundation, the Economic and Social Research Council, Helmholtz Zentrum Munchen, the German Research Center for Environmental Health, the German Federal Ministry of Education and Research, the German Center for Diabetes Research, the Munich Center for Health Sciences, the Ministry of Science and Research of the State of North Rhine-Westphalia, and the German Federal Ministry of Health. Copyright © 2015 Elsevier Ltd. All rights reserved.
    06/2015; 3(7). DOI:10.1016/S2213-8587(15)00127-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dyslipidaemia remains a significant risk factor for cardiovascular disease and additional lipid-modifying treatments are warranted to further decrease the cardiovascular disease burden. We assessed the safety, tolerability and efficacy of a novel cholesterol esterase transfer protein (CETP) inhibitor TA-8995 in patients with mild dyslipidaemia. In this randomised, double-blind, placebo-controlled, parallel-group phase 2 trial, we recruited patients (aged 18-75 years) from 17 sites (hospitals and independent clinical research organisations) in the Netherlands and Denmark with fasting LDL cholesterol levels between 2·5 mmol/L and 4·5 mmol/L, HDL cholesterol levels between 0·8 and 1·8 mmol/L and triglyceride levels below 4·5 mmol/L after washout of lipid-lowering treatments. Patients were randomly allocated (1:1) by a computer-generated randomisation schedule to receive one of the following nine treatments: a once a day dose of 1 mg, 2·5 mg, 5 mg, or 10 mg TA-8995 or matching placebo; 10 mg TA-8995 plus 20 mg atorvastatin; 10 mg TA-8995 plus 10 mg rosuvastatin or 20 mg atorvastatin or 10 mg rosuvastatin alone. We overencapsulated statins to achieve masking. The primary outcome was percentage change in LDL cholesterol and HDL cholesterol from baseline at week 12, analysed by intention to treat. This study is registered with ClinicalTrials.gov, number NCT01970215. Between Aug 15, 2013, and Jan 10, 2014, 364 patients were enrolled. At week 12, LDL cholesterol levels were reduced by 27·4% in patients assigned to the 1 mg dose, 32·7% in patients given the 2·5 mg dose, 45·3% in those given the 5 mg dose, and 45·3% in those given the 10 mg dose (p<0·0001). LDL cholesterol levels were reduced by 68·2% in patients given 10 mg TA-8995 plus atorvastatin, and by 63·3% in patients given rosuvastatin plus 10 mg TA-8995 (p<0·0001). A daily dose of 1 mg TA-8995 increased HDL cholesterol levels by 75·8%, 2·5 mg by 124·3%, 5 mg by 157·1%, and 10 mg dose by 179·0% (p<0·0001). In patients receiving 10 mg TA-8995 and 20 mg atorvastatin HDL cholesterol levels increased by 152·1% and in patients receiving 10 mg TA-8995 and 10 mg rosuvastatin by 157·5%. We recorded no serious adverse events or signs of liver or muscle toxic effects. TA-8995, a novel CETP inhibitor, is well tolerated and has beneficial effects on lipids and apolipoproteins in patients with mild dyslipidaemia. A cardiovascular disease outcome trial is needed to translate these effects into a reduction of cardiovascular disease events. Dezima. Copyright © 2015 Elsevier Ltd. All rights reserved.
    The Lancet 06/2015; DOI:10.1016/S0140-6736(15)60158-1 · 45.22 Impact Factor
  • Source
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although HDL cholesterol concentrations are strongly and inversely associated with risk of coronary heart disease, interventions that raise HDL cholesterol do not reduce risk of coronary heart disease. HDL cholesterol efflux capacity-a prototypical measure of HDL function-has been associated with coronary heart disease after adjusting for HDL cholesterol, but its effect on incident coronary heart disease risk is uncertain. We measured cholesterol efflux capacity and assessed its relation with vascular risk factors and incident coronary heart disease events in a nested case-control sample from the prospective EPIC-Norfolk study of 25 639 individuals aged 40-79 years, assessed in 1993-97 and followed up to 2009. We quantified cholesterol efflux capacity in 1745 patients with incident coronary heart disease and 1749 control participants free of any cardiovascular disorders by use of a validated ex-vivo radiotracer assay that involved incubation of cholesterol-labelled J774 macrophages with apoB-depleted serum from study participants. Cholesterol efflux capacity was positively correlated with HDL cholesterol concentration (r=0·40; p<0·0001) and apoA-I concentration (r=0·22; p<0·0001). It was also inversely correlated with type 2 diabetes (r=-0·18; p<0·0001) and positively correlated with alcohol consumption (r=0·12; p<0·0001). In analyses comparing the top and bottom tertiles, cholesterol efflux capacity was significantly and inversely associated with incident coronary heart disease events, independent of age, sex, diabetes, hypertension, smoking and alcohol use, waist:hip ratio, BMI, LDL cholesterol concentration, log-triglycerides, and HDL cholesterol or apoA-I concentrations (odds ratio 0·64, 95% CI 0·51-0·80). After a similar multivariable adjustment the risk of incident coronary heart disease was 0·80 (95% CI 0·70-0·90) for a per-SD change in cholesterol efflux capacity. HDL cholesterol efflux capacity might provide an alternative mechanism for therapeutic modulation of the HDL pathway beyond HDL cholesterol concentration to help reduce risk of coronary heart disease. US National Institutes of Health, UK Medical Research Council, Cancer Research UK. Copyright © 2015 Saleheen et al. Open Acess article disrtibuted under the terms of CC BY-NC-ND. Published by Elsevier Ltd.. All rights reserved.
    05/2015; 3(7). DOI:10.1016/S2213-8587(15)00126-6
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During recent decades, Bangladesh has experienced a rapid epidemiological transition from communicable to non-communicable diseases. Coronary heart disease (CHD), with myocardial infarction (MI) as its main manifestation, is a major cause of death in the country. However, there is limited reliable evidence about its determinants in this population. The Bangladesh Risk of Acute Vascular Events (BRAVE) study is an epidemiological bioresource established to examine environmental, genetic, lifestyle and biochemical determinants of CHD among the Bangladeshi population. By early 2015, the ongoing BRAVE study had recruited over 5000 confirmed first-ever MI cases, and over 5000 controls "frequency-matched" by age and sex. For each participant, information has been recorded on demographic factors, lifestyle, socioeconomic, clinical, and anthropometric characteristics. A 12-lead electrocardiogram has been recorded. Biological samples have been collected and stored, including extracted DNA, plasma, serum and whole blood. Additionally, for the 3000 cases and 3000 controls initially recruited, genotyping has been done using the CardioMetabochip+ and the Exome+ arrays. The mean age (standard deviation) of MI cases is 53 (10) years, with 88 % of cases being male and 46 % aged 50 years or younger. The median interval between reported onset of symptoms and hospital admission is 5 h. Initial analyses indicate that Bangladeshis are genetically distinct from major non-South Asian ethnicities, as well as distinct from other South Asian ethnicities. The BRAVE study is well-placed to serve as a powerful resource to investigate current and future hypotheses relating to environmental, biochemical and genetic causes of CHD in an important but under-studied South Asian population.
    European Journal of Epidemiology 05/2015; DOI:10.1007/s10654-015-0037-2 · 5.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. Methods We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested the association between a change in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 cases and 128,383 controls. Using individual-level genotype data from 18,249 persons, we also examined the risk of CAD associated with the presence of various numbers of height-associated alleles. To identify putative mechanisms, we analyzed whether genetically determined height was associated with known cardiovascular risk factors and performed a pathway analysis of the height-associated genes. Results We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. There was a graded relationship between the presence of an increased number of height-raising variants and a reduced risk of CAD (odds ratio for height quar-tile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that we studied, we observed significant associations only with levels of low-density lipoprotein cholesterol and triglycerides (accounting for approximately 30% of the association). We identified several overlapping pathways involving genes associated with both development and atherosclerosis. Conclusions There is a primary association between a genetically determined shorter height and an increased risk of CAD, a link that is partly explained by the association between shorter height and an adverse lipid profile. Shared biologic processes that determine achieved height and the development of atherosclerosis may explain some of the association. (Funded by the British Heart Foundation and others.).
    New England Journal of Medicine 04/2015; 372(17). DOI:10.1056/NEJMoa1404881 · 54.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background To investigate potential cardiovascular and other eff ects of long-term pharmacological interleukin 1 (IL-1) inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of infl ammation.
    The Lancet Diabetes & Endocrinology 03/2015; 11. DOI:10.1016/S2213-8587(15)00034-0 · 9.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis
    Nature 02/2015; 518(7538). DOI:10.1038/nature14177 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 x 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
    Nature 02/2015; 518(7538-7538):187-96. DOI:10.1038/nature14132 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. When MI occurs early in life, genetic inheritance is a major component to risk. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families, whereas common variants at more than 45 loci have been associated with MI risk in the population. Here we evaluate how rare mutations contribute to early-onset MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes in which rare coding-sequence mutations were more frequent in MI cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare non-synonymous mutations were at 4.2-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). Approximately 2% of early MI cases harbour a rare, damaging mutation in LDLR; this estimate is similar to one made more than 40 years ago using an analysis of total cholesterol16. Among controls, about 1 in 217 carried an LDLR coding-sequence mutation and had plasma LDL cholesterol > 190 mg dl−1. At apolipoprotein A-V (APOA5), carriers of rare non-synonymous mutations were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol, whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding-sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase15, 17 and apolipoprotein C-III. Combined, these observations suggest that, as well as LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.
    Nature 12/2014; advance online publication. DOI:10.1038/nature13917 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Ezetimibe lowers plasma levels of low-density lipoprotein (LDL) cholesterol by inhibiting the activity of the Niemann-Pick C1-like 1 (NPC1L1) protein. However, whether such inhibition reduces the risk of coronary heart disease is not known. Human mutations that inactivate a gene encoding a drug target can mimic the action of an inhibitory drug and thus can be used to infer potential effects of that drug. METHODS: We sequenced the exons of NPC1L1 in 7364 patients with coronary heart disease and in 14,728 controls without such disease who were of European, African, or South Asian ancestry. We identified carriers of inactivating mutations (nonsense, splice-site, or frameshift mutations). In addition, we genotyped a specific inactivating mutation (p.Arg406X) in 22,590 patients with coronary heart disease and in 68,412 controls. We tested the association between the presence of an inactivating mutation and both plasma lipid levels and the risk of coronary heart disease. RESULTS: With sequencing, we identified 15 distinct NPC1L1 inactivating mutations; approximately 1 in every 650 persons was a heterozygous carrier for 1 of these mutations. Heterozygous carriers of NPC1L1 inactivating mutations had a mean LDL cholesterol level that was 12 mg per deciliter (0.31 mmol per liter) lower than that in noncarriers (P=0.04). Carrier status was associated with a relative reduction of 53% in the risk of coronary heart disease (odds ratio for carriers, 0.47; 95% confidence interval, 0.25 to 0.87; P=0.008). In total, only 11 of 29,954 patients with coronary heart disease had an inactivating mutation (carrier frequency, 0.04%) in contrast to 71 of 83,140 controls (carrier frequency, 0.09%). CONCLUSIONS: Naturally occurring mutations that disrupt NPC1L1 function were found to be associated with reduced plasma LDL cholesterol levels and a reduced risk of coronary heart disease. (Funded by the National Institutes of Health and others.).
    New England Journal of Medicine 11/2014; 371(22):2072-82. DOI:10.1056/NEJMoa1405386 · 54.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to 91 462 coffee consumers of European ancestry with top single-nucleotide polymorphisms (SNPs) followed-up in ~30 062 and 7964 coffee consumers of European and African-American ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)>5.64) with per-allele effect sizes of 0.03-0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver enzyme profiles (P<5 × 10(-8)).Our genetic findings among European and African-American adults reinforce the role of caffeine in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in pharmacological and health effects of coffee.Molecular Psychiatry advance online publication, 7 October 2014; doi:10.1038/mp.2014.107.
    Molecular Psychiatry 10/2014; 20(5). DOI:10.1038/mp.2014.107 · 15.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated approximately 2,000, approximately 3,700 and approximately 9,500 SNPs explained approximately 21%, approximately 24% and approximately 29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/beta-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
    Nature Genetics 10/2014; DOI:10.1038/ng.3097 · 29.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Intracranial atherosclerosis (ICAD) is a frequent underlying mechanism of ischemic stroke. There is little direct evidence on its frequency and determinants from regions of high prevalence. This study explores the conventional and socioeconomic risk factors of ICAD in a South Asian population. Methods The Karachi Intracranial Stenosis Study is a case–control study of 313 cases of ischemic stroke secondary to ICAD and 331 controls enrolled from 4 major hospitals in Karachi, Pakistan. Stroke subtype was verified by a vascular neurologist using the Trial of Org 10172 in Acute Stroke Treatment classification. Relationships of conventional and socioeconomic risk factors with ICAD-related strokes are reported by calculating odds ratios (ORs) and their 95% confidence intervals (CIs). Results ICAD was the cause of stroke in 81.1% cases with large-artery atherosclerosis and 19.5% of all stroke events. Along with risk factors like history of hypertension (OR, 3.33; CI, 2.31-4.78), history of diabetes (OR, 2.29; CI, 1.56-3.35), use of tobacco (OR, 1.49; CI, 1.03-2.16), waist-to-hip ratio (OR, 1.58; CI, 1.04-2.41), and family history of stroke (OR, 1.89; CI, 1.21-2.95), other significant social determinants of ICAD strokes were monthly income (OR, 1.59; CI, 1.01-2.51), unemployment (OR, 2.15; CI, 1.21-3.83), and chronic stress (OR, 3.67; CI, 2.13-6.34). These social determinants were independent predictors of the risk of ICAD, in addition to those described in other world populations. Conclusions ICAD accounted for one fifth of all strokes making it the most common ischemic stroke mechanism. In addition to aggressive risk factor control, data also indicated broader holistic efforts on ameliorating inequity, unemployment, and stress reduction to reduce stroke because of ICAD.
    Journal of Stroke and Cerebrovascular Diseases 09/2014; 23(8). DOI:10.1016/j.jstrokecerebrovasdis.2014.04.003 · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) have begun to identify the common genetic component to ischaemic stroke (IS). However, IS has considerable phenotypic heterogeneity. Where clinical covariates explain a large fraction of disease risk, covariate informed designs can increase power to detect associations. As prevalence rates in IS are markedly affected by age, and younger onset cases may have higher genetic predisposition, we investigated whether an age-at-onset informed approach could detect novel associations with IS and its subtypes; cardioembolic (CE), large artery atherosclerosis (LAA) and small vessel disease (SVD) in 6,778 cases of European ancestry and 12,095 ancestry-matched controls. Regression analysis to identify SNP associations was performed on posterior liabilities after conditioning on age-at-onset and affection status. We sought further evidence of an association with LAA in 1,881 cases and 50,817 controls, and examined mRNA expression levels of the nearby genes in atherosclerotic carotid artery plaques. Secondly, we performed permutation analyses to evaluate the extent to which age-at-onset informed analysis improves significance for novel loci. We identified a novel association with an MMP12 locus in LAA (rs660599; p = 2.5610 27), with independent replication in a second population (p = 0.0048, OR(95% CI) = 1.18(1.05–1.32); meta-analysis p = 2.6610 28). The nearby gene, MMP12, was significantly overexpressed in carotid plaques compared to atherosclerosis-free control arteries (p = 1.2610 215 ; fold change = 335.6). Permutation analyses demonstrated improved significance for associations when accounting for age-at-onset in all four stroke phenotypes (p,0.001). Our results show that a covariate-informed design, by adjusting for age-at-onset of stroke, can detect variants not identified by conventional GWAS.
    PLoS Genetics 07/2014; 219201920(10). DOI:10.1371/journal.pgen.1004469 · 8.52 Impact Factor
  • Danish Saleheen · Wei Zhao · Asif Rasheed
    [Show abstract] [Hide abstract]
    ABSTRACT: All forms of tobacco lead to an increased risk of cardiovascular disorders. During the past few decades, the number of people who consume tobacco has increased worldwide because of an overall increase in the global population. It is estimated that close to 80% of the >1.3 billion people who smoke tobacco in the world are in low- and middle-income countries. Smokeless forms of tobacco are also widely consumed in low- and middle-income countries, including chewable and snuffed forms. Lack of targeted and effective strategies to control tobacco consumption contributes to a large burden of cardiovascular disorders in low- and middle-income countries, where cardiovascular disorders have become the leading cause of morbidity and mortality. In this review, we evaluate the epidemiology of tobacco use in low- and middle-income countries and assess the public health policies needed to control tobacco use in such regions for the prevention of cardiovascular disorders and other tobacco-related morbidities and mortality.
    Arteriosclerosis Thrombosis and Vascular Biology 07/2014; 34(9). DOI:10.1161/ATVBAHA.114.303826 · 5.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.
    Nature Genetics 03/2014; 46(3):234-244. DOI:10.1038/ng.2897 · 29.65 Impact Factor

Publication Stats

4k Citations
1,365.14 Total Impact Points

Institutions

  • 2014–2015
    • University of Pennsylvania
      Filadelfia, Pennsylvania, United States
    • William Penn University
      Filadelfia, Pennsylvania, United States
  • 2009–2015
    • Center for Non-Communicable Diseases
      Kurrachee, Sindh, Pakistan
  • 2008–2014
    • University of Cambridge
      • Department of Public Health and Primary Care
      Cambridge, England, United Kingdom
  • 2013
    • Harvard Medical School
      • Department of Medicine
      Boston, Massachusetts, United States
  • 2012
    • St George's, University of London
      • Stroke and Dementia Research Centre
      Londinium, England, United Kingdom
  • 2002–2009
    • Aga Khan University Hospital, Karachi
      • Department of Medicine
      Kurrachee, Sindh, Pakistan
  • 2003–2007
    • Aga Khan University, Pakistan
      • • Department of Medicine
      • • Department of Biological and Biomedical Sciences, Pakistan
      Kurrachee, Sindh, Pakistan