S J Norton

Seattle Children's Hospital, Seattle, Washington, United States

Are you S J Norton?

Claim your profile

Publications (20)51.58 Total impact

  • Otolaryngology Head and Neck Surgery 01/2013; · 1.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The number of pediatric cochlear implant (CI) recipients has increased substantially over the past 10 years, and it has become more important to understand the underlying mechanisms of the variable outcomes in this population. In this study, psychoacoustic measures of spectral-ripple and Schroeder-phase discrimination, the Clinical Assessment of Music Perception, and consonant-nucleus-consonant (CNC) word recognition in quiet and spondee reception threshold (SRT) in noise tests have been presented to 11 prelingually deafened CI users, aged 8-16 years with at least 5 years of CI experience. The children's performance was compared to the previously reported results of postlingually deafened adult CI users. The average spectral-ripple threshold (n = 10) was 2.08 ripples/octave. The average Schroeder-phase discrimination was 67.3% for 50 Hz and 56.5% for 200 Hz (n = 9). The Clinical Assessment of Music Perception test showed that the average complex pitch direction discrimination was 2.98 semitones. The mean melody score was at a chance level, and the mean timbre score was 34.1% correct. The mean CNC word recognition score was 68.6%, and the mean SRT in steady noise was -8.5 dB SNR. The children's spectral-ripple resolution, CNC word recognition, and SRT in noise performances were, within statistical bounds, the same as in a population of postlingually deafened adult CI users. However, Schroeder-phase discrimination and music perception were generally poorer than in the adults. It is possible then that this poorer performance seen in the children might be partly accounted for by the delayed maturation in their temporal processing ability, and because of this, the children's performance may have been driven more by their spectral sensitivity.
    Audiology and Neurotology 03/2012; 17(3):189-97. · 2.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To compare the prevalence of congenital cytomegalovirus (CMV) infection in Washington State in children with hearing loss (HL) and the general population and to compare the characteristics of HL in children with and without congenital CMV infection. Matched case-control; case cohort. Regional pediatric hospital, Washington State Department of Health (WSDOH). Cases were children 4 years and older with HL born in Washington State. Control individuals matched for demographic characteristics were identified at random through the WSDOH. Congenital CMV status determined using quantitative polymerase chain reaction testing on newborn heel stick blood spots archived by the WSDOH. Audiologic data were used to characterize HL. Congenital CMV testing was performed for 222 matched cases and controls. Congenital CMV infection was detected in 1.4% of controls and in 9.9% of cases (odds ratio, 10.5; 95% confidence interval, 2.6-92.4). An estimated 8.9% of HL in children in Washington can be attributed to CMV infection. After inclusion of an additional 132 children with HL (for a total of 354 cases in the case cohort), we observed that children with congenital CMV had more severe HL (P < .001) and higher proportions of progressive (P = .02) and unilateral (P = .002) HL compared with children without congenital CMV infection. In the 35 children with congenital CMV infection, there was no relationship between neonatal CMV load and severity of HL. In Washington State, children with HL had a far higher prevalence of congenital CMV viremia than did the general pediatric population, and CMV infection seems to be responsible for an appreciable fraction of pediatric HL in Washington State.
    Archives of otolaryngology--head & neck surgery 01/2011; 137(1):47-53. · 1.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: First, to establish the feasibility of the observer-based psychophysical procedure (OPP) in measuring sound detection in infant and toddler cochlear implant (CI) recipients. Second, to measure the psychometric function for detection (PFD) from individual subjects. Third, to determine whether reaction time (RT) provides information about the auditory sensitivity of young CI users. Twelve CI recipients, 11 to 32 mo old, participated in our study. Initially, tones were presented in sound field, and children learned to respond when they heard tones but not at other times. Once an 80% correct criterion was met in sound field, a novel stimulation paradigm was used to present stimuli to a single electrode while the child listened to acoustic input on most other electrodes using their usual map. The PFD and RT were measured using this single-electrode stimulation paradigm. Eleven subjects met criterion, 6 within the minimum possible number of trials. For eight subjects, the asymptotic level of detecting single-electrode stimuli averaged 86% correct, similar to levels achieved by normal-hearing infants and toddlers detecting pure tones. The PFD slope of infant and toddler CI recipients was less than or equal to the slope for adult CI users reported in previous studies. RT decreased significantly with stimulus level in four children. These preliminary results suggest that psychophysical detection data can be obtained from infant and toddler CI recipients using OPP. The PFD of young CI users may be shallower than that of adult CI users. Relatively good asymptotic detection performance implies that young CI users are more attentive to sound than has been suggested in previous studies. RT tended to be a less reliable measure of detection, but methodological changes could improve its utility.
    Ear and hearing 03/2009; 30(2):250-61. · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This is the final article in a series of five review articles and one editorial that summarizes the proceedings of the National Institute on Deafness and Other Communication Disorders workshop on Outcomes Research in Children with Hearing Loss held December 12 and 13, 2006. The purpose of this article is to highlight the recommendations that emerged during the workshop, addressing the developmental needs of children with hearing impairment. The information in this summary is based on the National Institute on Deafness and Other Communication Disorders workshop minutes available at http://www.nidcd.nih.gov/funding/programs/hb/outcomes/recommendations.htm. General research issues focus on funding mechanisms, access to a sufficient population, experimental cohorts and control groups, research methods and outcomes, standardization of testing across agencies and intervention programs, and facilitating access to data. Discussion of those issues is followed by an outline that presents future needs in outcomes research, including research design, sources of variance, research needs and gaps, and development of measurement tools.
    Ear and Hearing 01/2008; 28(6):773-7. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Congenital severe to profound sensorineural hearing loss (SNHL) is found in higher proportions of children with minority and/or lower socioeconomic status (SES). Cochlear implants were approved by the U.S. Food and Drug Administration for use in children with bilateral severe to profound SNHL in 1990. The objectives of the study were as follows: 1) to study the epidemiology of pediatric cochlear implantation, assessing whether cochlear implant technology is provided to children with severe to profound SNHL in proportion to their racial/ethnic or SES, and 2) to compare data provided by a national health care database with data provided by cochlear implant manufacturers. Patients aged 0 to 18 years who underwent cochlear implantation in 1997 using a cross-sectional study design. Analyses were made of pediatric cochlear implant patients, using data from the 1997 Health Care and Utilization Project/Kids' Inpatient Database. Relative rates of implantation compared with rates of severe to profound SNHL were calculated using national estimates generated from census and Galludet Research Institution data. Logistic regression analysis was carried out to compare implanted children of different racial/ethnic backgrounds. A surrogate measure of socioeconomic status was used based on the median household income of the patient's home ZIP code. Information was also obtained from the two companies producing U.S. Food and Drug Administration-approved cochlear implants in 1997 and used to determine whether the data obtained from the Health Care and Utilization Project/Kids' Inpatient Database were representative of the national cohort of implanted children. The Health Care and Utilization Project/Kids' Inpatient Database identified 124 children who underwent cochlear implant surgery in 1997. White and Asian children were implanted at higher rates than Hispanic and black children. Furthermore, white and Asian children received implants at greater rates than would be expected based on prevalence of severe to profound SNHL. The relative rate (RR) of implantation, defined as the proportion of children who received cochlear implants divided by the proportion of children with severe to profound SNHL (in each race/ethnicity group compared with the same ratio in white children), was similar in white (RR = 1.00) and Asian (RR = 0.93) children but markedly different in Hispanic (RR = 0.28) and black (RR = 0.10) children. Comparison of SES information from the Health Care and Utilization Project/Kids' Inpatient Database population with the manufacturers' database suggested that the Health Care and Utilization Project/Kids' Inpatient Database is representative of all implanted children in the United States. Both sources of information suggested that children receiving cochlear implants in the United States in 1997 resided in above-average SES areas. White and Asian children with severe to profound SNHL had higher proportionate rates of cochlear implantation than black and Hispanic children in 1997. Implanted children were more likely to live in areas (represented by ZIP codes) with higher median incomes. Although there was a disparity in rate of cochlear implantation based on race/ethnicity and surrogate measures of SES, these data did not allow the authors to determine the causes for these differences.
    The Laryngoscope 02/2005; 115(1):125-31. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Problem: Pediatric cochlear implant recipients have been historically assessed postoperatively with audiometric testing in a soundproof booth by trained audiologists. Assessment of functional outcome after cochlear implantation must also consider a number of other factors including speech perception, speech intelligibility, mode of communication, educational placement, as well as the social and psychological factors that affect one’s ability to function in the mainstream environment. No uniform tool for assessing effective functional outcome in the daily life of pediatric cochlear implant recipients has been developed.Methods: Using a cross-sectional design, the COCHLEA (Children’s Outcome for Cochlear Implant Hearing, Language, and Environmental Assessment) questionnaire, designed to measure functional outcomes in the pediatric cochlear implant population, was administered. The questionnaire was tested for reliability and validity, while investigating for any possible respondent or administrative burden. The parents of children with cochlear implants completed the questionnaire. The subjects were individuals with nonsyndromic sensorineural hearing loss (SNHL) implanted at Children’s Hospital and Regional Medical Center before 12/31/2001, aged 3–12 years. Implantation must have occurred before age 7. Non-English-speaking children/families were excluded secondary to a lack of resources.Results: Thirty-one patients were enrolled in the study. Preliminary results indicate that absolute scores of this outcome measure correlate with higher global health measures, including the Child Health Questionnaire (CHQ), and predict better audiometric scores.Conclusion: The COCHLEA functional outcome measure appears to be a reliable and valid method for assessing effective cochlear implantation. More research is necessary to determine this questionnaire’s sensitivity to longitudinal change.Significance: The COCHLEA questionnaire represents the first disease-specific functional outcome measure for the pediatric cochlear implant patient population. Ultimately it may be used to compare the effectiveness of cochlear implants and rehabilitation strategies.Support: None reported.
    Otolaryngology Head and Neck Surgery 08/2004; 131(2). · 1.72 Impact Factor
  • Kevin H. Franck, Susan J. Norton
    [Show abstract] [Hide abstract]
    ABSTRACT: The goal of this study was to estimate psychophysical levels using the electrically evoked compound action potential (EAP), measured with the Neural Response Telemetry capabilities of Cochlear Corporation's Nucleus CI24M cochlear implant system. Twelve postlingually deafened adults with at least 3 mo of implant experience with the CI24M were subjects in this study. EAP growth functions were successfully quantified on each active electrode of every subject. Correlation and regression analyses were performed between EAP measures and cochlear implant fitting psychophysics. Other information including performance, etiology and duration of hearing loss, and individual electrode impedance was considered. EAP thresholds were found to be highly correlated with psychophysical thresholds. The rate of EAP growth with increasing stimulation levels was also found to be correlated with the dynamic range of loudness limits and psychophysical thresholds in some subjects. No relationship was evident between EAP measures and speech perception tests. Information from EAP growth function measurements may be used to estimate psychophysical information used in cochlear implant fitting but not to predict performance with the device.
    Ear and Hearing 09/2001; 22(4):289-99. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The deafwaddler (dfw) mouse mutant is caused by a spontaneous mutation in the gene that encodes a plasma membrane Ca(2+) ATPase (type 2), PMCA2 (Street et al., 1998. Nat. Genet. 19, 390-394), which is expressed in cochlear and vestibular hair cells. Distortion product otoacoustic emission (DPOAE) amplitudes and latencies were examined in control mice, deafwaddler mutants, and controls treated with the drug furosemide. Furosemide causes a transient reduction of DPOAEs (Mills et al., 1993. J. Acoust. Soc. Am. 94, 2108-2122). We wanted to determine whether DPOAEs obtained in furosemide-treated mice were similar or different from results obtained in +/dfw mice. DPOAE amplitude and phase were measured as a function of f(2)/f(1) ratio. These data were converted into waveforms using inverse fast Fourier transform, and their average latency was used to estimate DPOAE group delay. Homozygous deafwaddlers did not produce DPOAEs. Heterozygous deafwaddlers (+/dfw) had increased DPOAE thresholds and reduced amplitudes at high frequencies, compared to controls. To the extent that DPOAEs depend on functional outer hair cells (OHCs), abnormal DPOAEs in +/dfw mice suggest that PMCA2 is important for OHC function at high frequencies. Similar to the effects of furosemide, the mutation reduced DPOAEs for low-level stimuli; in contrast to furosemide, the mutation altered DPOAEs elicited by high levels.
    Hearing Research 02/2001; 151(1-2):205-220. · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purposes of this article are to describe the overall protocol for the Identification of Neonatal Hearing Impairment (INHI) project and to describe the management of the data collected as part of this project. A well-defined protocol and database management techniques were needed to ensure that data were 1) collected accurately and in the same way across sites; 2) maintained in a database that could be used to provide feedback to individual sites regarding enrollment and the extent to which the protocol was complete on individual subjects; and 3) available to answer project questions. This article describes techniques that were used to meet these needs. This study was a prospective, randomized study that was designed to evaluate auditory brain stem responses, transient evoked otoacoustic emissions, and distortion product otoacoustic emissions as hearing-screening tools, and to relate neonatal test findings to hearing status, defined by visual reinforcement audiometry at 8 to 12 mo of age. Measures of middle-ear function also were obtained at some sites as part of the neonatal test battery. In addition, other clinical and demographic data were gathered to determine the extent to which factors, other than auditory status, influenced test behavior. Three groups were evaluated: neonatal intensive care unit (NICU) infants (those who spent 3 or more days in a NICU), well babies with risk factors for hearing loss, and well babies without risk factors. Six centers participated in the trial. The testers for the project included audiologists, technicians, audiology graduate students, and medical research staff. The same computerized neonatal test program was applied at each center. This program generated the neonatal test database automatically. Clinical and demographic data were collected by means of concise data collection forms and were entered into a database at each site. After the neonatal test, subjects from the NICU and at-risk well babies were evaluated with visual reinforcement audiometry starting at 8 to 12 mo of age. All data were electronically transmitted to the core site where they were merged into one overall database. This database was exercised to provide feedback and to identify discrepancies throughout the course of the study. In its final form, it served as the database on which all analyses were performed. The protocol was a departure from typical hearing screening procedures in terms of 1) its regimented application of three screening measures; 2) the detailed information that was obtained regarding subject clinical and demographic factors; and 3) its application of the same procedures across six centers having diverse geographic location and subject demographics. A learning curve for successfully executing the study protocols was observed. Throughout the study, monthly reports were generated to monitor subject enrollment, check for data completeness, and to perform data integrity checks. In combination with monthly data reports and checks that occurred throughout the progression of the study, miscellaneous data audits were performed to check accuracy of neonatal testing programs and to cross-check information entered in the clinical and demographic database. The data management techniques used in this project helped to ensure the quality of the data collection process and also allowed for detailed analyses once data were collected. This was particularly important because it enabled us to evaluate not only the performance of individual measures as screening tools, but also permitted an evaluation of the influence of other variables on screening test results.
    Ear and Hearing 11/2000; 21(5):357-72. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1) To describe transient evoked otoacoustic emission (TEOAE) levels, noise levels and signal to noise ratios (SNRs) for a range of frequency bands in three groups of neonates who were tested as a part of the Identification of Neonatal Hearing Impairment multi-center consortium project. 2) To describe the relations between these TEOAE measurements and age, test environment, baby state, and test time. TEOAEs were measured in 4478 graduates of neonatal intensive care units (NICUs), 353 well babies with at least one risk indicator, and 2348 well babies without risk factors. TEOAE and noise levels were measured for frequency bands centered at 1.0, 1.5, 2.0, 3.0, and 4.0 kHz for a click stimulus level of 80 dB SPL. For those ears not meeting "passing" stopping criteria at 80 dB pSPL, a level of 86 dB pSPL was included. Measurement-based stopping rules were used such that a test did not terminate unless the response revealed a criterion SNR in four out of five frequency bands or no response occurred after a preset number of averages. Baby state, test environment, and other test factors were captured at the time of test. TEOAE levels, noise levels and SNRs were similar for NICU graduates, well babies with risk factors and well babies without risk factors. There were no consistent differences in response quality as a function of test environment, i.e., private room, unit, open crib, nonworking isolette, or working isolette. Noise level varied little across risk group, test environment, or infant state other than crying, suggesting that the primary source of noise in TEOAE measurements is infant noise. The most significant effect on response quality was center frequency. Responses were difficult to measure in the half-octave band centered at 1.0 kHz, compared with higher frequencies. Reliable responses were measured routinely at frequencies of 1.5 kHz and higher. TEOAEs are easily measured in both NICU graduates and well babies with and without risk factors for hearing loss in a wide variety of test environments. Given the difficulties encountered in making reliable measurements for a frequency band centered at 1.0 kHz, its inclusion in a screening program may not be justified.
    Ear and Hearing 11/2000; 21(5):425-42. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1) To describe broad bandwidth measurements of acoustic admittance (Y) and energy reflectance (R) in the ear canals of neonates. 2) To describe a means for evaluating when a YR response is valid. 3) To describe the relations between these YR measurements and age, gender, left/right ear, and selected risk factors. YR responses were obtained at four test sites in well babies without risk indicators, well babies with at least one risk indicator, and graduates of neonatal intensive care units. YR responses were measured using a chirp stimulus at moderate levels over a frequency range from 250 to 8000 Hz. The system was calibrated based on measurements in a set of cylindrical tubes. The probe assembly was inserted in the ear canal of the neonate, and customized software was used for data acquisition. YR responses were measured in over 4000 ears, and half of the responses were used in exploratory data analyses. The particular YR variables chosen for analysis were energy reflectance, equivalent volume and acoustic conductance. Based on the view that unduly large negative equivalent volumes at low frequencies were physically impossible, it was concluded that approximately 13% of the YR responses showed evidence of improper probe seal in the ear canal. To test how these outliers influenced the overall pattern of YR responses, analyses were conducted both on the full data set (N = 2081) and the data set excluding outliers (N = 1825). The YR responses averaged over frequency varied with conceptional age (conception to date of test), gender, left/right ear, and selected risk factors; in all cases, significant effects were observed more frequently in the data set excluding outliers. After excluding outliers and controlling for conceptional age effects, the dichotomous risk factors accounting for the greatest variance in the YR responses were, in rank order, cleft lip and palate, aminoglycoside therapy, low birth weight, history of ventilation, and low APGAR scores. In separate analyses, YR responses varied in the first few days after birth. An analysis showed that the use of a YR test criterion to assess the quality of probe seal may help control the false-positive rate in evoked otoacoustic emission testing. This is the first report of wideband YR responses in neonates. Data were acquired in a few seconds, but the responses are highly sensitive to whether the probe is fully sealed in the ear canal. A real-time acoustic test of probe fit is proposed to better address the probe seal problem. The YR responses provide information on middle-ear status that varies over the neonatal age range and that is sensitive to the presence or absence of risk factors, ear, and gender differences. Thus, a YR test may have potential for use in neonatal screening tests for hearing loss.
    Ear and Hearing 11/2000; 21(5):443-61. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study is to describe the recruitment and retention strategies as well as the sample demographics for families with infants completing the neonatal examination and returning for follow-up. These data are compared to those infants inactivated from the study. This study was a prospective, randomized clinical study. All infants who were confined to the neonatal intensive care unit (NICU) and well babies with at least one risk indicator were targeted for behavioral audiometric follow-up testing. In addition, infants without risk factors from the well-baby nursery, but who failed a newborn test, were also followed. Several variables were evaluated to determine those factors, if any, that might predict which families returned for follow-up testing. Recruitment was achieved as per study design with 4911 high-risk infants and 2348 well-baby nursery infants (without risk indicators for hearing) enrolled. Of the 4911 high-risk infants enrolled, 64% were successfully recruited into the follow-up portion of the study. This was less than the projected rate of 80%. Factors predicting noncompliance with the study protocol for follow-up were predominantly sociodemographic and included nonwhite race, no insurance, substance abuse, young maternal age, more than two children at home, and late onset of prenatal care. Factors related to low socioeconomic status and increased social risk were the strongest predictors of poor study protocol compliance. Despite retention challenges, 64% of the targeted, high-risk infants subsequently returned for the 8-to 12-mo behavioral hearing assessment protocols for validation purposes.
    Ear and Hearing 11/2000; 21(5):462-70. · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1) To describe the hearing status of the at-risk infants in the National Institutes of Health-Identification of Neonatal Hearing Impairment study sample at 8 to 12 mo corrected age (chronologic age adjusted for prematurity). 2) To describe the visual reinforcement audiometry (VRA) protocol that was used to obtain monaural behavioral data for the sample. All neonatal intensive care unit infants and well babies with risk factors (including well babies who failed neonatal tests) were targeted for follow-up behavioral evaluation once they had reached 8 mo corrected age. Three thousand one hundred and thirty-four (64.4%) of the 4868 surviving infants returned for at least one behavioral hearing evaluation, which employed a well-defined VRA protocol. VRA thresholds or minimum response levels (MRLs) were determined for speech and pure tones of 1.0, 2.0, and 4.0 kHz for each ear using insert earphones. More than 95% of the infants were reliably tested with the VRA protocol; 90% provided complete tests (four MRLs for both ears). Ninety-four percent of the at-risk infants were found to have normal hearing sensitivity (MRLs of 20 dB HL) at 1.0, 2.0, and 4.0 kHz in both ears. Of the infants, 2.2% had bilateral hearing impairment, and 3.4% had impairment in one ear only. More than 80% of the impaired ears had losses of mild-to-moderate degree. This may be the largest study to attempt to follow all at-risk infants with behavioral audiometric testing, regardless of screening outcome, in an effort to validate the results of auditory brain stem response, distortion product otoacoustic emission, and transient evoked otoacoustic emission testing in the newborn period. It is one of only a few studies to report hearing status of infants at 1 yr of age, using VRA on a clinical population. Successful testing of more than 95% of the infants who returned for the VRA follow-up documents the feasibility of obtaining monaural behavioral data in this population.
    Ear and Hearing 11/2000; 21(5):471-87. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article describes the audiologic findings and medical status of infants who were found to have hearing loss, detected as part of the Identification of Neonatal Hearing Impairment (INHI) project. In addition, the neonatal and maternal health variables for the group of infants who could not be tested with visual reinforcement audiometry (VRA) due to developmental and visual disability are presented. The overall goal of the INHI project was to evaluate the test performance of auditory brain stem response and evoked otoacoustic emission (OAE) tests given in the newborn period. These tools were evaluated on the basis of the infants' hearing when tested behaviorally with VRA at 8 to 12 mo corrected age. The neonatal test results, VRA results, medical history information and a record of intercurrent events occurring between the neonatal period and the time of VRA were collated and reviewed. The purpose of this article is to review the characteristics of those infants who were found to have hearing loss. Of 2995 infants who had VRA tests judged to be of good or fair reliability, 168 had a finding of hearing loss for at least one ear, an incidence of 5.6%. Sixty-six infants had bilateral losses, an incidence of 2%, and 22 infants had bilateral hearing losses in the moderate to profound range, an incidence 0.7%. The prevalence of middle ear problems was greater than 50% among these infants with hearing loss. From the larger group of 168 infants with hearing loss, a group of 56 infants (86 ears) was chosen as those with a low probability that the hearing loss was due to transient middle ear pathology and was more likely hearing loss of a permanent nature. These were the infants used for the analyses of neonatal test performance (Norton et al., 2000). In this selected group there were 30 infants with bilateral impairment of at least mild degree, which is an incidence of 1%. There were approximately equal numbers of ears in the mild, moderate, severe and profound range of hearing loss. Risk factors associated with hearing loss were reviewed for the total sample of infants tested with VRA and for those infants with hearing loss. A history of treatment with aminoglycosides was the risk factor most often reported in the entire sample; however, there was no difference in prevalence of this risk factor for the normal-hearing and hearing-impaired groups. The risk factor associated with the highest incidence of hearing loss was stigmata of syndromes associated with sensorineural hearing loss and other neurosensory disorders. Sixty-seven infants who returned for follow-up could not be tested with VRA due to severe developmental delay or visual disability. Many of these infants had medical histories indicating the sequelae of extreme prematurity and/or very low birthweight. Most of the hearing losses found in this study were mild and, based on clinical history and tympanometry tests, many of the mild and some of the moderate impairments may have been acquired in early infancy due to middle ear effusion. In the group of infants used for determination of neonatal test performance there were approximately equal numbers of mild, moderate, severe and profound losses. Only a small percentage of infants with a conventional risk indicator for hearing loss actually had a hearing loss, and there were a significant number of infants with hearing loss who did not have a risk indicator. These findings support the need for an early identification program based on universal neonatal hearing screening rather than by targeted testing of those with risk indicators.
    Ear and Hearing 11/2000; 21(5):488-507. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article summarizes the results of a multi-center study, "Identification of Neonatal Hearing Impairment," sponsored by the National Institutes of Health. The purpose of this study was to determine the performance characteristics of three measures of peripheral auditory system status, transient evoked otoacoustic emissions (TEOAEs), distortion product otoacoustic emissions (DPOAEs), and auditory brain stem responses (ABR), applied in the neonatal period in predicting hearing status at 8 to 12 mo corrected age. The design and implementation of this study are described in the first two articles in this series. Seven institutions participated in this study; 7179 infants were evaluated. Graduates of the neonatal intensive care unit and well babies with one or more risk factors for hearing loss were targeted for follow-up testing using visual reinforcement audiometry (VRA) at 8 to 12 mo corrected age. Neonatal test performance was evaluated using the VRA data as the "gold standard." The major results of the study are described in the nine articles preceding this summary article. TEOAEs in response to an 80 dB pSPL click, DPOAEs in response to L1 = 65 and L2 = 50 dB SPL and ABR in response to a 30 dB nHL click performed well as predictors of permanent hearing loss of 30 dB or greater at 8 to 12 mo corrected age. All measures were robust with respect to infant state, test environment and infant medical status. No test performed perfectly. Based on the data from this study, the 1993 National Institutes of Health Consensus Conference-recommended protocol-an OAE test followed by an ABR test for those infants failing the OAE test-would result in low referral rate (96 to 98%). TEOAEs for 80 dB pSPL, ABR for 30 dB nHL and DPOAEs for L1 = 65 dB SPL and L2 = 50 dB SPL perform well in predicting hearing status based on the area under the relative operating characteristic curve. Accuracy for the OAE measurements are best when the speech awareness threshold or the pure-tone average for 2.0 kHz and 4 kHz are used as the gold standard. ABR accuracy varies little as a function of the frequencies included in the gold standard. In addition, 96% of those infants returning for VRA at 8 to 12 mo corrected age were able to provide reliable ear-specific behavioral thresholds using insert earphones and a rigorous psychophysical VRA protocol.
    Ear and Hearing 11/2000; 21(5):529-35. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article describes the design of a multicenter study sponsored by the National Institutes of Health. The purpose of this study was to determine the accuracy of three measures of peripheral auditory system status (transient evoked otoacoustic emissions, distortion product otoacoustic emissions, and auditory brain stem responses) applied in the perinatal period for predicting behavioral hearing status at 8 to 12 mo corrected age. The influences of the infant's medical status, the test environment, and test and response parameters on test performance were examined. Seven institutions participated in this study. There were 7179 infants evaluated in the perinatal period. All graduates of the neonatal intensive care unit (4478) and well babies with one or more risk factor for hearing loss (353) were targeted for follow-up testing using visual reinforcement audiometry (VRA) at 8 to 12 mo corrected age. Well babies without any risk indicators (N = 2348) were not targeted for follow-up VRA testing. However, 80 of these well babies did not pass the screening protocol and thus were targeted for follow-up VRA testing as well. Perinatal test performance was evaluated using the VRA data as the "gold standard." The results of this study are described in a series of 11 articles following this introductory article. The evaluation of newborn hearing tests required a longitudinal study in which newborn test results were compared with a gold standard based on behavioral audiometric assessment. Such an evaluation was possible because all newborns, passes as well as refers, were followed up long enough to permit reliable behavioral measurements. In addition, prenatal, perinatal, and maternal history information, test environment, and test parameter information were collected to provide data that led to a complete description of factors affecting test outcomes. All of these data were obtained in a sample of sufficient ethnic, medical, and geographic diversity in efforts to increase the generalizability of the results. Finally, the data were combined in a relational data base to examine the factors that influence test performance. Specific information related to these issues is presented in the articles that follow.
    Ear and Hearing 11/2000; 21(5):348-56. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1) To describe distortion product otoacoustic emission (DPOAE) levels, noise levels and signal to noise ratios (SNRs) for a wide range of frequencies and two stimulus levels in neonates and infants. 2) To describe the relations between these DPOAE measurements and age, test environment, baby state, and test time. DPOAEs were measured in 2348 well babies without risk indicators, 353 well babies with at least one risk indicator, and 4478 graduates of neonatal intensive care units (NICUs). DPOAE and noise levels were measured at f2 frequencies of 1.0, 1.5, 2.0, 3.0, and 4.0 kHz, and for primary levels (L1/L2) of 65/50 dB SPL and 75/75 dB SPL. Measurement-based stopping rules were used such that a test did not terminate unless the response was at least 3 dB above the mean noise floor + 2 SDs (SNR) for at least four of five test frequencies. The test would terminate, however, if these criteria were not met after 360 sec. Baby state, test environment, and other test factors were captured at the time of each test. DPOAE levels, noise levels and SNRs were similar for well babies without risk indicators, well babies with risk indicators, and NICU graduates. There was a tendency for larger responses at f2 frequencies of 1.5 and 2.0 Hz, compared with 3.0 and 4.0 kHz; however, the noise levels systematically decreased as frequency increased, resulting in the most favorable SNRs at 3.0 and 4.0 kHz. Response levels were least and noise levels highest for an f2 frequency of 1.0 kHz. In addition, test time to achieve automatic stopping criteria was greatest for 1.0 kHz. With the exception of "active/alert" and "crying" babies, baby state had little influence on DPOAE measurements. Additionally, test environment had little impact on these measurements, at least for the environments in which babies were tested in this study. However, the lowest SNRs were observed for infants who were tested in functioning isolettes. Finally, there were some subtle age affects on DPOAE levels, with the infants born most prematurely producing the smallest responses, regardless of age at the time of test. DPOAE measurements in neonates and infants result in robust responses in the vast majority of ears for f2 frequencies of at least 2.0, 3.0 and 4.0 kHz. SNRs decrease as frequency decreases, making the measurements less reliable at 1.0 kHz. When considered along with test time, there may be little justification for including an f2 frequency at 1.0 kHz in newborn screening programs. It would appear that DPOAEs result in reliable measurements when tests are conducted in the environments in which babies typically are found. Finally, these data suggest that babies can be tested in those states of arousal that are most commonly encountered in the perinatal period.
    Ear and Hearing 11/2000; 21(5):400-24. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1) To describe the auditory brain stem response (ABR) measurement system and optimized methods used for study of newborn hearing screening. 2) To determine how recording and infant factors related to the screening, using well-defined, specific ABR outcome measures. Seven thousand one hundred seventy-nine infants, 4478 from the neonatal intensive care unit (NICU) and the remaining from the well-baby nursery, were evaluated with an automated ABR protocol in each ear. Two channel recordings were obtained (vertex to mastoid or channel A and vertex to nape of neck or channel B) in response to click stimuli of 30 and 69 dB nHL in all infants as well as 50 dB nHL in infants who did not meet criteria for response at 30 dB. Criteria for response included F(SP) > or =3.1 and a tester-judgment of response. Criteria could be met in the first or repeat test with a maximum of 6144 accepted sweeps per test. More than 99% of infants could complete the ABR protocol. More than 90% of NICU and well-baby nursery infants "passed" given the strict criteria for response, whereas 86% of those with high risk factors met criterion for ABR response detection. The number of infants who did not meet ABR response criteria in one or both ears was systematically related to stimulus level with the largest group not meeting criteria at 30 dB followed by 50 and 69 dB nHL. Meeting criteria on the ABR was positively correlated with the amplitude of wave V, with low noise and low electrode impedance. Factors that predicted how many sweeps would be needed to reach criterion F(SP) included noise level of the test site, state of the baby (for example, quiet sleep versus crying), recording noise, electrode impedance and response latency. Channel A (vertex to mastoid) reached criterion more often than channel B (vertex to nape of neck) due to higher noise in channel B. Average total test time for 30 dB nHL screening in both ears was under 8 minutes. Well babies with risk factors took slightly longer to evaluate than other groups with this automated ABR procedure and have higher noise levels. ABR implemented with an automated detection algorithm using a 30 dB nHL click stimulus is reliable technique for rapid assessment of auditory status in newborns. Factors other than hearing loss that influenced the test result include infant state, electrode location and impedance, testing site, and infant risk status. Even so, ABRs were reliably recorded in the vast majority of babies under circumstances in which most babies are found in the perinatal period.
    Ear and Hearing 10/2000; 21(5):383-99. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to describe the demographic data, medical status, and incidence of risk factors for hearing impairment in the neonatal intensive care unit (NICU) and well-baby populations in a multicenter prospective study designed to assess neonatal hearing impairment and to evaluate factors that might affect neonatal hearing test performance. This was a prospective multicenter study funded by the National Institutes of Health-National Institute on Deafness and Other Communication Disorders to evaluate the effectiveness of auditory brain stem response, transient evoked otoacoustic emissions, and distortion product otoacoustic emissions for newborn hearing screening. Research staff at each site obtained informed consent and detailed demographic and medical data, including information on established risk factors for hearing loss on 4478 high-risk infants cared for in the NICU, 2348 infants from the well-baby nurseries with no risk factor, and 353 infants from the well-baby nurseries with risk factors. For follow-up purposes the sample was divided further to include a subgroup called selects. Selects were either infants from the well-baby nursery who had an established risk factor for hearing impairment (N = 353) or did not pass the neonatal hearing screen protocol (N = 80). In this study, we focus on the distribution of infants by nursery and risk factors only. Particular effort was made to enroll infants with risk factors for hearing loss in both the NICU and well-baby nurseries. Descriptive analyses are used to describe characteristics of this sample. All 10 of the risk factors established by the Joint Committee on Infant Hearing in 1994 were identified in the NICU population. The four most common were ototoxic medications (44.4%), very low birth weight (17.8%), assisted ventilation > 5 days (16.4%), and low Apgar scores at 1 or 5 min (13.9%). In contrast, only six risk factors were present in the well-baby nurseries: family history (6.6%), craniofacial abnormalities (3.4%), low Apgar scores (2.8%), syndromes (0.5%), ototoxic medications (0.2%), and congenital infection (0.1%). These descriptive risk factor data reflect both the newborn populations at the study sites and the bias for enrolling infants at risk for hearing loss. The high-risk NICU sample reflects the characteristics typically found in graduates of the NICU. The data summarized in this study will be used to assess the relationships between risk factor and hearing test outcome.
    Ear and Hearing 10/2000; 21(5):373-82. · 2.83 Impact Factor