Takuya Sakurai

Kyorin University, Edo, Tōkyō, Japan

Are you Takuya Sakurai?

Claim your profile

Publications (53)130.27 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ghrelin is a physiological-active peptide with growth hormone-releasing activity, orexigenic activity, etc. In addition, the recent study has also suggested that ghrelin possesses the pathophysiological abilities related with type 2 diabetes. However, the ghrelin-direct-effects implicated in type 2 diabetes on peripheral tissues have been still unclear, whereas its actions on the central nervous system (CNS) appear to induce the development of diabetes. Thus, to assess its peripheral effects correlated with diabetes, we investigated the regulatory mechanisms about adipokines, which play a central role in inducing peripheral insulin resistance, secreted from mature 3T3-L1 adipocytes stimulated with ghrelin in vitro.The stimulation with 50 nmol/L ghrelin for 24 h resulted in the significant 1.9-fold increase on vascular endothelial growth factor-120 (VEGF120) releases (p < 0.01) and the 1.7-fold on monocyte chemoattractant protein-1 (MCP-1) (p < 0.01) from 3T3-L1 adipocytes, respectively, while ghrelin failed to enhance tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10 and adiponectin secretions. In addition, Akt phosphorylation on Ser473 and c-Jun NH2-terminal protein kinase (JNK) phosphorylation on Thr183/Tyr185 were markedly enhanced 1.4-fold (p < 0.01) and 1.6-fold (p < 0.01) in the ghrelin-stimulated adipocytes, respectively. Furthermore, the treatment with LY294002 (50 μmol/L) and Wortmannin (10nmol/L), inhibitors of phosphatidylinositol 3-kinase (PI3K), significantly decreased the amplified VEGF120 secretion by 29% (p < 0.01) and 28% (p < 0.01) relative to the cells stimulated by ghrelin alone, respectively, whereas these inhibitors had no effects on increased MCP-1 release. On the other hand, JNK inhibitor SP600125 (10 μmol/L) clearly reduced the increased MCP-1, but not VEGF120, release by 35% relative to the only ghrelin-stimulated cells (p < 0.01).In conclusion, ghrelin can enhance the secretions of proinflammatory adipokines, VEGF120 and MCP-1, but fails to affect IL-10 and adiponectin which are considered to be anti-inflammatory adipokines. Moreover, this augmented VEGF120 release is invited through the activation of PI3K pathways and the MCP-1 is through JNK pathways. Consequently, our results strongly suggest that ghrelin can induce the development of diabetes via its direct-action in peripheral tissues as well as via in CNS. © 2014 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 01/2015; 230(1). DOI:10.1002/jcp.24699 · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the pathological characterizations of Alzheimer's disease (AD) is the deposition of amyloid beta peptide (Abeta) in cerebral cortical cells. The deposition of Abeta in neuronal cells leads to an increase in the production of free radicals that are typified by reactive oxygen species (ROS), thereby inducing cell death. A growing body of evidence now suggests that several plant-derived food ingredients are capable of scavenging ROS in mammalian cells. The purpose of the present study was to investigate whether enzyme-treated asparagus extract (ETAS), which is rich in antioxidants, is one of these ingredients. The pre-incubation of differentiated PC 12 cells with ETAS significantly recovered Abeta-induced reduction of cell viability, which was accompanied by reduced levels of ROS. These results suggest that ETAS may be one of the functional food ingredients with anti-oxidative capacity to help prevent AD.
    Natural product communications 04/2014; 9(4):561-4. · 0.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is now evident that many nuclear hormone receptors can modulate target gene expression. REV-ERBα, one of the nuclear hormone receptors with the capacity to alter clock function, is critically involved in lipid metabolism, adipogenesis, and the inflammatory response. Recent studies suggest that REV-ERBα plays a key role in the mediation between clockwork and inflammation. The purpose of the current study was to investigate the role of REV-ERBα in the regulation of interleukin-6 (il6) gene expression in murine macrophages. REV-ERBα agonists, or overexpression of rev-erb α in the murine macrophage cell line RAW264 cells, suppressed the induction of il6 mRNA following a lipopolysaccharide (LPS) endotoxin challenge. Also, rev-erb α overexpression decreased LPS-stimulated nuclear factor κB (NFκB) activation in RAW264 cells. We showed that REV-ERBα represses il6 expression not only indirectly through an NFκB binding motif but also directly through a REV-ERBα binding motif in the murine il6 promoter region. Furthermore, peritoneal macrophages from mice lacking rev-erb α increased il6 mRNA expression. These data suggest that REV-ERBα regulates the inflammatory response of macrophages through the suppression of il6 expression. REV-ERBα may therefore be identified as a potent anti-inflammatory receptor and be a therapeutic target receptor of inflammatory diseases.
    01/2014; 2014(Article ID 685854):10 pages. DOI:10.1155/2014/685854
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increases in the number of patients with dementia involving Alzheimer's disease (AD) are seen as a grave public health problem. In neurodegenerative disorders involving AD, biological stresses, such as oxidative and inflammatory stress, induce neural cell damage. Asparagus (Asparagus officinalis) is a popular vegetable, and an extract prepared from this reportedly possesses various beneficial biological activities. In the present study, we investigated the effects of enzyme-treated asparagus extract (ETAS) on neuronal cells and early cognitive impairment of senescence-accelerated mouse prone 8 (SAMP8) mice. The expression of mRNAs for factors that exert cytoprotective and anti-apoptotic functions, such as heat-shock protein 70 and heme oxygenase-1, was upregulated in NG108-15 neuronal cells by treatment with ETAS. Moreover, when release of lactate dehydrogenase from damaged NG108-15 cells was increased for cells cultured in medium containing either the nitric oxide donor sodium nitroprusside or the hypoxia mimic reagent cobalt chloride, ETAS significantly attenuated this cell damage. Also, when contextual fear memory, which is considered to be a hippocampus-dependent memory, was significantly impaired in SAMP8 mice, ETAS attenuated the cognitive impairment. These results suggest that ETAS produces cytoprotective effects in neuronal cells and attenuates the effects on the cognitive impairment of SAMP8 mice.
    Natural product communications 01/2014; 9(1):101-6. · 0.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Disruption of the circadian rhythm is a contributory factor to clinical and pathophysiological conditions, including cancer, the metabolic syndrome, and inflammation. Chronic and systemic inflammation are a potential trigger of type 2 diabetes and cardiovascular disease and are caused by the infiltration of large numbers of inflammatory macrophages into tissue. Although recent studies identified the circadian clock gene Rev-erbα, a member of the orphan nuclear receptors, as a key mediator between clockwork and inflammation, the molecular mechanism remains unknown. In this study, we demonstrate that Rev-erbα modulates the inflammatory function of macrophages through the direct regulation of Ccl2 expression. Clinical conditions associated with chronic and systemic inflammation, such as aging or obesity, dampened Rev-erbα gene expression in peritoneal macrophages from C57BL/6J mice. Rev-erbα agonists or overexpression of Rev-erbα in the murine macrophage cell line RAW264 suppressed the induction of Ccl2 following an LPS endotoxin challenge. We discovered that Rev-erbα represses Ccl2 expression directly through a Rev-erbα-binding motif in the Ccl2 promoter region. Rev-erbα also suppressed CCL2-activated signals, ERK and p38, which was recovered by the addition of exogenous CCL2. Further, Rev-erbα impaired cell adhesion and migration, which are inflammatory responses activated through the ERK- and p38-signaling pathways, respectively. Peritoneal macrophages from mice lacking Rev-erbα display increases in Ccl2 expression. These data suggest that Rev-erbα regulates the inflammatory infiltration of macrophages through the suppression of Ccl2 expression. Therefore, Rev-erbα may be a key link between aging- or obesity-associated impairment of clockwork and inflammation.
    The Journal of Immunology 12/2013; 192(1). DOI:10.4049/jimmunol.1301982 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Naturally occurring regulatory T cells (nTregs), important for immune regulation and the maintenance of self-tolerance, develop in the thymus. The Hirosaki hairless rat (HHR), derived from the Sprague-Dawley rat (SDR), was shown to have decreased peripheral lymphocyte number, small thymus, and leukocyte infiltration in its dermis. In the HHR thymus, the medulla was underdeveloped and nTreg number was decreased. Array comparative genome hybridization revealed the deletion of an NK cell lectin-like receptor gene, Ly49s3, detecting MHC class I molecules on target cells, in the chromosome 4q42 region in HHRs. The gene was expressed in thymic conventional dendritic cells (cDCs) in SDRs, but not in HHRs. When CD4-single-positive or CD4(+)CD8(-)CD25(-) thymocytes were cultured with thymic cDCs, the expression of nTreg marker genes was lower when these cells were from HHRs than from SDRs, suggesting that HHR cDCs are deficient in the ability to induce and maintain nTreg differentiation. Expression of the genes was recovered when Ly49s3 was expressed on HHR thymic cDCs. Expression levels of MHC class II genes, presumably from cDCs, were parallel to those of nTreg marker genes in mixed-cell cultures. However, in the presence of an anti-MHC class I Ab, blocking interaction between Ly49s3 and MHC class I molecules, the expression of the former genes was upregulated, whereas the latter was downregulated. These results suggest that Ly49s3 contributes to nTreg regulation along with MHC class II molecules, whose effects alone are insufficient, and loss of Ly49s3 from thymic cDCs is the reason for the nTreg deficiency in HHRs.
    The Journal of Immunology 08/2013; 191(7). DOI:10.4049/jimmunol.1203511 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, the ability of polyphenols to reduce the risk of dementia and Alzheimer's disease (AD) has attracted a great deal of interest. In the present study, we investigated the attenuating effects of oligomerised lychee fruit-derived polyphenol (OLFP, also called Oligonol) on early cognitive impairment. Male senescence-accelerated mouse prone 8 (SAMP8) mice (4 months old) were given OLFP (100 mg/kg per d) for 2 months, and then conditioned fear memory testing was conducted. Contextual fear memory, which is considered hippocampus-dependent memory, was significantly impaired in SAMP8 mice compared with non-senescence-accelerated mice. OLFP attenuated cognitive impairment in SAMP8 mice. Moreover, the results of real-time PCR analysis that followed DNA array analysis in the hippocampus revealed that, compared with SAMP8 mice, the mRNA expression of Wolfram syndrome 1 (Wfs1) was significantly higher in SAMP8 mice administered with OLFP. Wfs1 reportedly helps to protect against endoplasmic reticulum (ER) stress, which is thought to be one of the causes for AD. The expression of Wfs1 was significantly up-regulated in NG108-15 neuronal cells by the treatment with OLFP, and the up-regulation was inhibited by the treatment of the cells with a c-Jun N-terminal kinase-specific inhibitor rather than with an extracellular signal-regulated kinase inhibitor. Moreover, OLFP significantly attenuated the tunicamycin-induced expression of the ER stress marker BiP (immunoglobulin heavy chain-binding protein) in the cells. These results suggest that OLFP has an attenuating effect on early cognitive impairment in SAMP8 mice, and diminishes ER stress in neuronal cells.
    The British journal of nutrition 03/2013; DOI:10.1017/S000711451300086X · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is recognized as a risk factor for lifestyle-related diseases such as type 2 diabetes and cardiovascular disease. White adipose tissue (WAT) is not only a static storage site for energy; it is also a dynamic tissue that is actively involved in metabolic reactions and produces humoral factors, such as leptin and adiponectin, which are collectively referred to as adipokines. Additionally, because there is much evidence that obesity-induced inflammatory changes in WAT, which is caused by dysregulated expression of inflammation-related adipokines involving tumor necrosis factor- α and monocyte chemoattractant protein 1, contribute to the development of insulin resistance, WAT has attracted special attention as an organ that causes diabetes and other lifestyle-related diseases. Exercise training (TR) not only leads to a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the inflammation-related adipokines in WAT. Therefore, TR is widely used as a tool for preventing and improving lifestyle-related diseases. This review outlines the impact of TR on the expression and secretory response of adipokines in WAT.
    International Journal of Endocrinology 01/2013; 2013:801743. DOI:10.1155/2013/801743 · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The results obtained from our previous study showed that the addition of a lychee fruit-derived low molecular form of polyphenol, Oligonol, provoked higher levels of lipolytic activity via the degradation of perilipin 1 in primary rat adipocytes. In the current study, we investigated the possible mechanisms by which Oligonol could promote the degradation of perilipin 1 protein. The addition of Oligonol caused the degradation of GFP-tagged perilipin 1 in a time-dependent manner. Meanwhile, the co-addition of Oligonol and NH4CI, a lysosome inhibitor, failed to promote the degradation of perilipin 1, while the co-addition of Oligonol and MG132, a proteasome inhibitor, induced a reduction in the levels of perilipin 1. These results suggest that the Oligonol-induced degradation of perilipin 1 is regulated via a lysosome-dependent mechanism.
    Natural product communications 09/2012; 7(9):1193-6. · 0.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: In adipose cells, adipose triglyceride lipase (ATGL) catalyzes the first step in adipocyte triacylglyceride hydrolysis, thereby regulating both basal and hormone-stimulated lipolysis. However, little is known about the molecular mechanism(s) underlying habitual exercise-induced adaptive modulation of ATGL in white adipocytes via alteration in transcription regulator and lipolytic cofactors. METHODOLOGY/PRINCIPAL RESULTS: Male Wistar rats were randomly divided into 2 groups a sedentary control group (CG) and a habitual exercise group (EG). The EG was subjected to running on a treadmill set at 5 days per week for 9 weeks. The CG was not subjected to running on a treadmill. In the EG, levels of ATGL mRNA and protein were elevated with a significant increase in lipolysis compared with the CG, accompanied by a significant increase in associations of CGI-58 with ATGL protein. Under these conditions, an upregulation of peroxisome proliferation-activated receptorg-2 (PPARg-2) was observed. In the EG, the addition of rosiglitazone further significantly increased the levels of ATGL protein compared with the CG. However, attenuated levels of the ATGL protein in adipocytes were obtained by the addition of insulin, which is known to inhibit the expression of ATGL, in both types of groups. Actually, levels of plasma insulin were significantly reduced in the EG compared with the CG. CONCLUSIONS: These data suggest that elevated levels of ATGL are involved in the exercise-induced enhancement of lipolysis in primary adipocytes. The exact mechanism(s) underlying this phenomenon is associated, at least in part, with upregulated transcriptional activation of PPARg-2. In addition, exercise-induced lower circulation levels of insulin also correlate with habitual exercise-induced higher levels of ATGL in primary adipocytes.
    PLoS ONE 07/2012; 7(7):e40876. DOI:10.1371/journal.pone.0040876 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review summarizes the literature describing the significance of various conditions, such as hypoxia, oxidative stress, and, above all, physical exercise, in the hypoxia-inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) signaling pathway mainly in skeletal muscle. HIF-1α acts as a master regulator for the expression of genes involved in the hypoxia response of most mammalian cells. Namely, HIF-1α initiates transcription of various hypoxia-adaptive genes, such as angiogenesis, glycolysis, and erythropoiesis, after the formation of heterodimer with HIF-1β. Among them, VEGF is the most potent endothelial specific mitogen, which recruits endothelial cells into hypoxic foci and avascular area and stimulates their proliferation. The study on acute exercise shows that several components of the HIF-1 pathway, involving VEGF and erythropoietin, are activated in response to acute changes in oxygen demand in human skeletal muscle, suggesting that oxygen sensitive pathways could be relevant for adaptaion to physical activity by increasing capillary growth. Also, the effects of endurance training on the activity of the HIF pathway in human skeletal muscle under hypoxic conditions appear to be definitely higher than those under normoxic conditions, indicating that combining hypoxia with exercise training appears to improve some aspects of muscle O2 transport and/or metabolism. On the other hand, increased levels of reactive oxygen species (ROS) due to physical exercise induce the expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), which regulates mitochondrial biogenesis in multiple cell types, resulting in increases in VEGF expression and subsequent angiogenesis, strongly suggesting HIF-1α-independent regulation of VEGF and angiogenesis. Thus, the precise relationship among exercise, the HIF-1 pathway including VEGF, PGC-1α, and ROS needs further study.
    05/2012; 1(1):5-16. DOI:10.7600/jpfsm.1.5
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in genes for any of the six subunits of NADPH oxidase cause chronic granulomatous disease (CGD), but almost 2/3 of CGD cases are caused by mutations in the X-linked CYBB gene, also known as NAD (P) H oxidase 2. Approximately 260 patients with CGD have been reported in Japan, of whom 92 were shown to have mutations of the CYBB gene and 16 to have chromosomal deletions. However, there has been very little detailed analysis of the range of the deletion or close understanding of the disease based on this. We therefore analyzed genomic rearrangements in X-linked CGD using array comparative genomic hybridization analysis, revealing the extent and the types of the deletion genes. The subjects were five Japanese X-linked CGD patients estimated to have large base deletions of 1 kb or more in the CYBB gene (four male patients, one female patient) and the mothers of four of those patients. The five Japanese patients were found to range from a patient exhibiting deletions only of the CYBB gene to a female patient exhibiting an extensive DNA deletion and the DMD and CGD phenotype manifested. Of the other three patients, two exhibited CYBB, XK, and DYNLT3 gene deletions. The remaining patient exhibited both a deletion encompassing DNA subsequent to the CYBB region following intron 2 and the DYNLT3 gene and a complex copy number variation involving the insertion of an inverted duplication of a region from the centromere side of DYNLT3 into the deleted region.
    PLoS ONE 02/2012; 7(2):e27782. DOI:10.1371/journal.pone.0027782 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent increases in the number of obese individuals and individuals suffering from lifestyle-related diseases, such as type 2 diabetes, that accompany obesity have become a serious social problem. White adipose tissue (WAT) is more than a mere organ for storage of energy; it is also a highly active metabolic and endocrine organ that secretes physiologically active substances collectively known as adipokines, including tumor necrosis factor-α and adiponectin. Dysregulated expression of adipokines in WAT that is hypertrophied by obesity has been closely associated with the phenomenon of insulin resistance. Therefore, WAT is currently considered to be one of the tissues that promote lifestyle-related diseases. Reduction of excess WAT that results from obesity is seen as an important strategy in preventing and improving lifestyle-related diseases. This review shows that exercise training as well as intake of supplements, such as polyphenols, is one strategy for this, because this regimen can result in reduction of WAT mass, which affects the expression and secretory response of adipokines.
    Environmental Health and Preventive Medicine 02/2012; 17(5):348-56. DOI:10.1007/s12199-012-0271-0
  • 01/2012; 1(2):351-356. DOI:10.7600/jpfsm.1.351
  • 01/2012; 1(3):381-387. DOI:10.7600/jpfsm.1.381
  • 01/2012; 1(2):333-337. DOI:10.7600/jpfsm.1.333
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that exercise prevents and reduces cognitive impairment. In the present study, we focused on exercise training as a tool to prevent cognitive impairment, and searched for novel molecules that may relate to the prevention of cognitive impairment in the hippocampus. Two-month-old senescence-accelerated mouse prone-8 (SAMP8) mice were subjected to voluntary exercise training by running on a wheel for 4 months, and were then assigned a conditioned fear memory test. Moreover, various mRNA levels in the hippocampus were examined by DNA array analysis and real-time PCR. Contextual fear memory in SAMP8 control mice was significantly impaired compared with that in non-senescence mice. Exercise training definitely attenuated such cognitive impairment. The results of real-time PCR analysis that was conducted following DNA array analysis in the hippocampus revealed that, compared with SAMR8 control mice, the expression levels of leucine zipper transcription factor-like protein 1 (Lztfl1) mRNA were significantly higher in SAMP8 mice subjected to exercise training. In addition, the overexpression of Lztfl1 promoted neurite outgrowth in Neuro 2a cells. These results suggest that exercise has a preventive effect on cognitive impairment in SAMP8 mice, and that exercise-induced increase in Lztfl1 induces neurite outgrowth.
    Biochemical and Biophysical Research Communications 11/2011; 416(1-2):125-9. DOI:10.1016/j.bbrc.2011.11.008 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic low-level inflammation is associated with obesity and a sedentary lifestyle, causing metabolic disturbances such as insulin resistance. Exercise training has been shown to decrease chronic low-level systemic inflammation in high-fat diet (HFD)-induced obesity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Ghrelin is a peptide hormone predominantly produced in the stomach that stimulates appetite and induces growth hormone release. In addition to these well-known functions, recent studies suggest that ghrelin localizes to immune cells and exerts an anti-inflammatory effect. The purpose of the current study was to investigate the role of ghrelin expressed in macrophages in the anti-inflammatory effects of voluntary exercise training. Expression of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein (MCP)-1 and F4/80 was increased in adipose tissue from mice fed a HFD (HFD mice) compared with mice fed a standard diet (SD mice), whereas the expression of these inflammatory cytokines was markedly decreased in mice performing voluntary wheel running during the feeding of a HFD (HFEx mice). The expression of TNF-α was also increased in peritoneal macrophages by a HFD and exercise training inhibited the increase of TNF-α expression. Interestingly, expression of ghrelin in peritoneal macrophages was decreased by a HFD and recovered by exercise training. Suppression of ghrelin expression by siRNA increased TNF-α expression and LPS-stimulated NF-κB activation in RAW264 cells, which is a macrophage cell line. TNF-α expression by stimulation with LPS was significantly suppressed in RAW264 cells cultured in the presence of ghrelin. These results suggest that ghrelin exerts potent anti-inflammatory effects in macrophages and functions as a mediator of the beneficial effects of exercise training.
    Biochemical and Biophysical Research Communications 08/2011; 413(3):454-9. DOI:10.1016/j.bbrc.2011.08.117 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown that exercise training reduced white adipose tissue (WAT) mass compared to that in sedentary controls, and that the smaller mass contained fewer adipocytes. However, the effect of exercise training on adipogenesis is not completely clear. Therefore, we re-examined the effect of exercise training on adipocyte numbers in WAT and, if such an effect was found tested the adipogenic responses of stromal-vascular fraction (SVF) cells containing adipose tissue-derived stem cells (ADSC) in epididymal WAT from exercise-trained (TR) rats. Wistar male rats were divided into two groups: control (C) and TR. The TR rats were subjected to exercise on a treadmill for 9 weeks. SVF cells containing ADSC were separated from epididymal WAT by centrifugation. Expression of adipocyte differentiation-related genes and adipogenesis of SVF cells were examined. In SVF cells of TR rats, the expression of peroxisome proliferator-activated receptor γ (PPARγ) and that of PPARγ target lipogenic genes was dramatically downregulated, whereas that of preadipocyte factor-1 gene was significantly upregulated. Lipid accumulation in SVF cells of TR rats after the induction of adipocyte differentiation was significantly suppressed in comparison with that of C rats. Moreover, increased expression of hypoxia-inducible factor-1α (HIF-1α) protein was observed in SVF cells of TR rats. Pre-treatment of YC-1, a potent HIF-1α inhibitor, in SVF cells of TR rats restored adipogenesis. These results suggest that exercise training suppresses the ability of SVF cells to differentiate into adipocytes, and that underlying mechanisms involve the upregulation of HIF-1α expression.
    Acta Physiologica 12/2010; 200(4):325-38. DOI:10.1111/j.1748-1708.2010.02159.x · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oligonol is a lychee fruit-derived low-molecular form of polyphenol. In this study, the effect of Oligonol on the mitogen activated-protein kinase (MAPK) signaling pathway in primary adipocytes was investigated to examine the mechanism underlying the enhanced levels of phosphorylated extracellular-signaling regulatory kinase1/2 (ERK1/2) that accompany an in vitro increase in lipolysis. Oligonol significantly elevated the levels of activated Ras and the phosphorylation of Raf-1 and MAPK/ERK kinase1/2 (MEK1/2) with no increase in pan-Raf-1 and -MEK1/2 proteins. The increase in phosphorylation of Raf-1 and MEK1/2 with Oligonol was inhibited completely by pretreatment with GW5074, a selective Raf-1 inhibitor, or PD98059, a selective MEK1/2 inhibitor. IL-6 also activated the MAPK signaling pathway in adipocytes through the association with its receptor. IL-6-induced phosphorylation of Raf-1 and MEK1/2 was significantly inhibited by pretreatment with the IL-6 receptor antibody. Under such a condition, however, the levels of phosphorylated Raf-1 and MEK1/2 with Oligonol still remained significantly higher, and there was a significant decrease in secretion of IL-6 from adipocytes, compared with untreated control cells. These results suggest that Oligonol activates the Ras/Raf-1/MEK1/2 signaling pathway, independent of the IL-6 signaling pathway, leading to activation of ERK1/2 proteins in primary adipocytes.
    Biochemical and Biophysical Research Communications 10/2010; 402(3):554-9. DOI:10.1016/j.bbrc.2010.10.082 · 2.28 Impact Factor

Publication Stats

462 Citations
130.27 Total Impact Points

Institutions

  • 2007–2015
    • Kyorin University
      • School of Medicine
      Edo, Tōkyō, Japan
    • Ritsumeikan University
      • Department of Bioscience and Bioinformatics
      Kioto, Kyōto, Japan
  • 2004–2007
    • Tokyo Metropolitan University
      • Department of Health Promotion Sciences
      Edo, Tōkyō, Japan
  • 2001
    • Chiba University
      • Department of Biology
      Tiba, Chiba, Japan