Derek J Hausenloy

National Institute for Health Research, Londinium, England, United Kingdom

Are you Derek J Hausenloy?

Claim your profile

Publications (201)1334.7 Total impact

  • Derek J Hausenloy · Derek M Yellon
    New England Journal of Medicine 08/2015; DOI:10.1056/NEJMe1509718 · 55.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whether T1-mapping cardiovascular magnetic resonance (CMR) can accurately quantify the area-at-risk (AAR) as delineated by T2 mapping and assess myocardial salvage at 3T in reperfused ST-segment elevation myocardial infarction (STEMI) patients is not known and was investigated in this study. 18 STEMI patients underwent CMR at 3T (Siemens Bio-graph mMR) at a median of 5 (4-6) days post primary percutaneous coronary intervention using native T1 (MOLLI) and T2 mapping (WIP #699; Siemens Healthcare, UK). Matching short-axis T1 and T2 maps covering the entire left ventricle (LV) were assessed by two independent observers using manual, Otsu and 2 standard deviation thresholds. Inter- and intra-observer variability, correlation and agreement between the T1 and T2 mapping techniques on a per-slice and per patient basis were assessed. A total of 125 matching T1 and T2 mapping short-axis slices were available for analysis from 18 patients. The acquisition times were identical for the T1 maps and T2 maps. 18 slices were excluded due to suboptimal image quality. Both mapping sequences were equally prone to susceptibility artifacts in the lateral wall and were equally likely to be affected by microvascular obstruction requiring manual correction. The Otsu thresholding technique performed best in terms of inter- and intra-observer variability for both T1 and T2 mapping CMR. The mean myocardial infarct size was 18.8 ± 9.4 % of the LV. There was no difference in either the mean AAR (32.3 ± 11.5 % of the LV versus 31.6 ± 11.2 % of the LV, P = 0.25) or myocardial salvage index (0.40 ± 0.26 versus 0.39 ± 0.27, P = 0.20) between the T1 and T2 mapping techniques. On a per-slice analysis, there was an excellent correlation between T1 mapping and T2 mapping in the quantification of the AAR with an R(2) of 0.95 (P < 0.001), with no bias (mean ± 2SD: bias 0.0 ± 9.6 %). On a per-patient analysis, the correlation and agreement remained excellent with no bias (R(2) 0.95, P < 0.0001, bias 0.7 ± 5.1 %). T1 mapping CMR at 3T performed as well as T2 mapping in quantifying the AAR and assessing myocardial salvage in reperfused STEMI patients, thereby providing an alternative CMR measure of the the AAR.
    Journal of Cardiovascular Magnetic Resonance 08/2015; 17(1):73. DOI:10.1186/s12968-015-0173-6 · 4.56 Impact Factor
  • Niall Burke · Andrew R Hall · Derek J Hausenloy
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are known to play crucial roles in normal cellular physiology and in more recent years they have been implicated in a wide range of pathologies. Central to both these roles is their ability to alter their shape interchangeably between two different morphologies: an elongated interconnected network and a fragmented discrete phenotype - processes which are under the regulation of the mitochondrial fusion and fission proteins, respectively. In this review article, we focus on the mitochondrial fusion protein optic atrophy protein 1 (OPA1) in cardiovascular health and disease and we explore its role as a potential therapeutic target for treating cardiovascular and metabolic disease.
    Current Drug Targets 07/2015; 16(8). DOI:10.2174/1389450116666150102113648 · 3.02 Impact Factor
  • Journal of the American College of Cardiology 06/2015; 65(25):2764-5. DOI:10.1016/j.jacc.2015.02.082 · 16.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intrapartum-related events are the third leading cause of childhood mortality worldwide and result in one million neurodisabled survivors each year. Infants exposed to a perinatal insult typically present with neonatal encephalopathy (NE). The contribution of pure hypoxia-ischaemia (HI) to NE has been debated; over the last decade, the sensitising effect of inflammation in the aetiology of NE and neurodisability is recognised. Therapeutic hypothermia is standard care for NE in high-income countries; however, its benefit in encephalopathic babies with sepsis or in those born following chorioamnionitis is unclear. It is now recognised that the phases of brain injury extend into a tertiary phase, which lasts for weeks to years after the initial insult and opens up new possibilities for therapy.There has been a recent focus on understanding endogenous neuroprotection and how to boost it or to supplement its effectors therapeutically once damage to the brain has occurred as in NE. In this review, we focus on strategies that can augment the body's own endogenous neuroprotection. We discuss in particular remote ischaemic postconditioning whereby endogenous brain tolerance can be activated through hypoxia/reperfusion stimuli started immediately after the index hypoxic-ischaemic insult. Therapeutic hypothermia, melatonin, erythropoietin and cannabinoids are examples of ways we can supplement the endogenous response to HI to obtain its full neuroprotective potential. Achieving the correct balance of interventions at the correct time in relation to the nature and stage of injury will be a significant challenge in the next decade. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to
    Archives of Disease in Childhood - Fetal and Neonatal Edition 06/2015; DOI:10.1136/archdischild-2014-306284 · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Novel therapies capable of reducing myocardial infarct (MI) size when administered prior to reperfusion are required to prevent the onset of heart failure in ST-segment elevation myocardial infarction (STEMI) patients treated by primary percutaneous coronary intervention (PPCI). Experimental animal studies have demonstrated that mineralocorticoid receptor antagonist (MRA) therapy administered prior to reperfusion can reduce MI size, and MRA therapy prevents adverse left ventricular (LV) remodeling in post-MI patients with LV impairment. With these 2 benefits in mind, we hypothesize that initiating MRA therapy prior to PPCI, followed by 3 months of oral MRA therapy, will reduce MI size and prevent adverse LV remodeling in STEMI patients. The MINIMISE-STEMI trial is a prospective, randomized, double-blind, placebo-controlled trial that will recruit 150 STEMI patients from four centers in the United Kingdom. Patients will be randomized to receive either an intravenous bolus of MRA therapy (potassium canrenoate 200 mg) or matching placebo prior to PPCI, followed by oral spironolactone 50 mg once daily or matching placebo for 3 months. A cardiac magnetic resonance imaging scan will be performed within 1 week of PPCI and repeated at 3 months to assess MI size and LV remodeling. Enzymatic MI size will be estimated by the 48-hour area-under-the-curve serum cardiac enzymes. The primary endpoint of the study will be MI size on the 3-month cardiac magnetic resonance imaging scan. The MINIMISE STEMI trial will investigate whether early MRA therapy, initiated prior to reperfusion, can reduce MI size and prevent adverse post-MI LV remodeling. © 2015 The Authors. Clinical Cardiology published by Wiley Periodicals, Inc.
    Clinical Cardiology 05/2015; 38(5). DOI:10.1002/clc.22401 · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The past decade has witnessed a number of exciting developments in the field of mitochondrial dynamics - a phenomenon in which changes in mitochondrial shape and movementimpact on cellular physiology and pathology. By undergoing fusion and fission, mitochondria are able to change their morphology between elongated interconnected networks and discrete fragmented structures, respectively. The cardiac mitochondria, in particular, have garnered much interest due to their unique spatial arrangement in the adult cardiomyocyte, and the multiple roles they play in cell death and survival. In this article, we review the role of the mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease. Copyright © 2015. Published by Elsevier B.V.
    European journal of pharmacology 05/2015; 763(Pt A). DOI:10.1016/j.ejphar.2015.04.056 · 2.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients undergoing vascular surgery procedures constitute a 'high-risk' group. Fatal and disabling perioperative complications are common. Complications arise via multiple aetiological pathways. This mechanistic redundancy limits techniques to reduce complications that target individual mechanisms, for example, anti-platelet agents. Remote ischaemic preconditioning (RIPC) induces a protective phenotype in at-risk tissue, conferring protection against ischaemia-reperfusion injury regardless of the trigger. RIPC is induced by repeated periods of upper limb ischaemia-reperfusion produced using a blood pressure cuff. RIPC confers some protection against cardiac and renal injury during major vascular surgery in proof-of-concept trials. Similar trials suggest benefit during cardiac surgery. Several uncertainties remain in advance of a full-scale trial to evaluate clinical efficacy. We propose a feasibility trial to fully evaluate arm-induced RIPC's ability to confer protection in major vascular surgery, assess the incidence of a proposed composite primary efficacy endpoint and evaluate the intervention's acceptability to patients and staff. Four hundred major vascular surgery patients in five Irish vascular centres will be randomised (stratified for centre and procedure) to undergo RIPC or not immediately before surgery. RIPC will be induced using a blood pressure cuff with four cycles of 5 minutes of ischaemia followed by 5 minutes of reperfusion immediately before the start of operations. There is no sham intervention. Participants will undergo serum troponin measurements pre-operatively and 1, 2, and 3 days post-operatively. Participants will undergo 12-lead electrocardiograms pre-operatively and on the second post-operative day. Predefined complications within one year of surgery will be recorded. Patient and staff experiences will be explored using qualitative techniques. The primary outcome measure is the proportion of patients who develop elevated serum troponin levels in the first 3 days post-operatively. Secondary outcome measures include length of hospital and critical care stay, unplanned critical care admissions, death, myocardial infarction, stroke, mesenteric ischaemia and need for renal replacement therapy (within 30 days of surgery). RIPC is novel intervention with the potential to significantly improve perioperative outcomes. This trial will provide the first evaluation of RIPC's ability to reduce adverse clinical events following major vascular surgery. NCT02097186 Date Registered: 24 March 2014.
    Trials 04/2015; 16(1):185. DOI:10.1186/s13063-015-0678-1 · 1.73 Impact Factor
  • Heerajnarain Bulluck · Derek J Hausenloy
    [Show abstract] [Hide abstract]
    ABSTRACT: To recognise that acute myocardial ischaemia/reperfusion injury is a neglected therapeutic target for cardioprotection that is responsible for the ongoing morbidity and mortality of patients with ischaemic heart disease. To be aware that cardiac bypass surgery and ST segment elevation myocardial infarction are the major clinical settings in which the heart is subjected to acute ischaemia/reperfusion injury. To be familiar with the concept of ‘ischaemic conditioning’, in which the heart is protected against acute ischaemia/reperfusion injury by subjecting it to cycles of brief ischaemia and reperfusion, a therapeutic strategy which has been demonstrated in proof-of-concept studies to be beneficial in patients with ischaemic heart disease.
    Heart (British Cardiac Society) 04/2015; 101(13). DOI:10.1136/heartjnl-2014-306531 · 5.60 Impact Factor
  • Sandrine Lecour · Rainer Schulz · Péter Ferdinandy · Derek J Hausenloy
    Cardiovascular Research 02/2015; 106(1). DOI:10.1093/cvr/cvv052 · 5.94 Impact Factor
  • Source
    Klaus T. Preissner · William A. Boisvert · Derek J Hausenloy
    Thrombosis and Haemostasis 02/2015; 113(3):439-440. DOI:10.1160/TH15-01-0086 · 4.98 Impact Factor
  • V. Sivaraman · J. M. J. Pickard · D. J. Hausenloy
    [Show abstract] [Hide abstract]
    ABSTRACT: For patients with ischaemic heart disease, remote ischaemic conditioning may offer an innovative, non-invasive and virtually cost-free therapy for protecting the myocardium against the detrimental effects of acute ischaemia-reperfusion injury, preserving cardiac function and improving clinical outcomes. The intriguing phenomenon of remote ischaemic conditioning was first discovered over 20 years ago, when it was shown that the heart could be rendered resistant to acute ischaemia-reperfusion injury by applying one or more cycles of brief ischaemia and reperfusion to an organ or tissue away from the heart - initially termed 'cardioprotection at a distance'. Subsequent pre-clinical and then clinical studies made the important discovery that remote ischaemic conditioning could be elicited non-invasively, by inducing brief ischaemia and reperfusion to the upper or lower limb using a cuff. The actual mechanism underlying remote ischaemic conditioning cardioprotection remains unclear, although a neuro-hormonal pathway has been implicated. Since its initial discovery in 1993, the first proof-of-concept clinical studies of remote ischaemic conditioning followed in 2006, and now multicentre clinical outcome studies are underway. In this review article, we explore the potential mechanisms underlying this academic curiosity, and assess the success of its application in the clinical setting. © 2015 The Authors. Anaesthesia published by John Wiley & Sons Ltd on behalf of Association of Anaesthetists of Great Britain and Ireland.
    Anaesthesia 02/2015; 70(6). DOI:10.1111/anae.12973 · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Retrograde perfusion into coronary sinus during coronary artery bypass graft (CABG) surgery reduces the need for cardioplegic interruptions and ensures the distribution of cardioplegia to stenosed vessel territories, therefore enhancing the delivery of cardioplegia to the subendocardium. Peri-operative myocardial injury (PMI), as measured by the rise of serum level of cardiac biomarkers, has been associated with short and long-term clinical outcomes. We conducted a retrospective analysis to investigate whether the combination of antegrade and retrograde techniques of cardioplegia delivery is associated with a reduced PMI than that observed with the traditional methods of myocardial preservation.Methods Fifty-four consecutive patients underwent CABG surgery using either antegrade cold blood cardioplegia (group 1, n = 28) or cross-clamp fibrillation (group 2, n = 16) or antegrade retrograde warm blood cardioplegia (group 3, n = 10). The study primary end-point was PMI, evaluated with total area under the curve (AUC) of high-sensitivity Troponin-T (hsTnT), measured pre-operatively and at 6, 12, 24, 48 and 72 hours post-surgery. Secondary endpoints were acute kidney injury (AKI) and inotrope scores, length of intensive care unit (ICU) and hospital stay, new onset atrial fibrillation (AF) and clinical outcomes at 6 weeks (death, non-fatal myocardial infarction, coronary artery revascularization, stroke).ResultsThere was evidence that mean total AUC of hsTnT was different among the three groups (P = 0.050). In particular mean total AUC of hsTnT was significantly lower in group 3 compared to both group 1 (-16.55; 95% CI: -30.08, -3.01; P = 0.018) with slightly weaker evidence of a lower mean hsTnT in group 3 when compared to group 2 (-15.13; 95% CI -29.87, -0.39; P = 0.044). There was no evidence of a difference when comparing group 2 to group 1 (-1.42,; 95% CI: -12.95, 10.12, P = 0.806).Conclusions Our retrospective analysis suggests that, compared to traditional methods of myocardial preservation, antegrade retrograde cardioplegia may reduce PMI in patients undergoing first time CABG surgery.
    Journal of Cardiothoracic Surgery 12/2014; 9(1):1484. DOI:10.1186/s13019-014-0184-7 · 1.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 1993, Przyklenk and colleagues made the intriguing experimental observation that ‘brief ischemia in one vascular bed also protects remote, virgin myocardium from subsequent sustained coronary artery occlusion’ and that this effect ‘…. may be mediated by factor(s) activated, produced, or transported throughout the heart during brief ischemia/reperfusion’. This seminal study laid the foundation for the discovery of ‘remote ischemic conditioning’ (RIC), a phenomenon in which the heart is protected from the detrimental effects of acute ischemia/reperfusion injury (IRI), by applying cycles of brief ischemia and reperfusion to an organ or tissue remote from the heart. The concept of RIC quickly evolved to extend beyond the heart, encompassing inter-organ protection against acute IRI. The crucial discovery that the protective RIC stimulus could be applied non-invasively, by simply inflating and deflating a blood pressure cuff placed on the upper arm to induce cycles of brief ischemia and reperfusion, has facilitated the translation of RIC into the clinical setting. Despite intensive investigation over the last 20 years, the underlying mechanisms continue to elude researchers. In the 8th Biennial Hatter Cardiovascular Institute Workshop, recent developments in the field of RIC were discussed with a focus on new insights into the underlying mechanisms, the diversity of non-cardiac protection, new clinical applications, and large outcome studies. The scientific advances made in this field of research highlight the journey that RIC has made from being an intriguing experimental observation to a clinical application with patient benefit.
    Archiv für Kreislaufforschung 12/2014; 110(1). DOI:10.1007/s00395-014-0453-6 · 5.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite optimal therapy, the morbidity and mortality of patients presenting with an acute myocardial infarction (MI) remain significant, and the initial mechanistic trigger of myocardial "ischaemia/reperfusion (I/R) injury" remains greatly unexplained. Here we show that factors released from the damaged cardiac tissue itself, in particular extracellular RNA (eRNA) and tumour-necrosis-factor α (TNF-α), may dictate I/R injury. In an experimental in vivo mouse model of myocardial I/R as well as in the isolated I/R Langendorff-perfused rat heart, cardiomyocyte death was induced by eRNA and TNF-α. Moreover, TNF-α promoted further eRNA release especially under hypoxia, feeding a vicious cell damaging cycle during I/R with the massive production of oxygen radicals, mitochondrial obstruction, decrease in antioxidant enzymes and decline of cardiomyocyte functions. The administration of RNase1 significantly decreased myocardial infarction in both experimental models. This regimen allowed the reduction in cytokine release, normalisation of antioxidant enzymes as well as preservation of cardiac tissue. Thus, RNase1 administration provides a novel therapeutic regimen to interfere with the adverse eRNA-TNF-α interplay and significantly reduces or prevents the pathological outcome of ischaemic heart disease.
    Thrombosis and Haemostasis 10/2014; 112(6). DOI:10.1160/TH14-08-0703 · 4.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ischaemic heart disease (IHD) remains the leading cause of death and disability worldwide. As a result, novel therapies are still needed to protect the heart from the detrimental effects of acute ischaemia-reperfusion injury, in order to improve clinical outcomes in IHD patients. In this regard, although a large number of novel cardioprotective therapies discovered in the research laboratory have been investigated in the clinical setting, only a few of these have been demonstrated to improve clinical outcomes. One potential reason for this lack of success may have been the failure to thoroughly assess the cardioprotective efficacy of these novel therapies in suitably designed preclinical experimental animal models. Therefore, the aim of this Position Paper by the European Society of Cardiology Working Group Cellular Biology of the Heart is to provide recommendations for improving the preclinical assessment of novel cardioprotective therapies discovered in the research laboratory, with the aim of increasing the likelihood of success in translating these new treatments into improved clinical outcomes.
    Cardiovascular Research 10/2014; 104(3). DOI:10.1093/cvr/cvu225 · 5.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pre-, post-, and remote conditioning of the myocardium are well described adaptive responses that markedly enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and provide therapeutic paradigms for cardioprotection. Nevertheless, more than 25 years after the discovery of ischemic preconditioning, we still do not have established cardioprotective drugs on the market. Most experimental studies on cardioprotection are still undertaken in animal models, in which ischemia/reperfusion is imposed in the absence of cardiovascular risk factors. However, ischemic heart disease in humans is a complex disorder caused by, or associated with, cardiovascular risk factors and comorbidities, including hypertension, hyperlipidemia, diabetes, insulin resistance, heart failure, altered coronary circulation, and aging. These risk factors induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury per se and responses to cardioprotective interventions. Moreover, some of the medications used to treat these risk factors, including statins, nitrates, and antidiabetic drugs, may impact cardioprotection by modifying cellular signaling. The aim of this article is to review the recent evidence that cardiovascular risk factors and their medication may modify the response to cardioprotective interventions. We emphasize the critical need to take into account the presence of cardiovascular risk factors and concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple risk factors.
    Pharmacological reviews 10/2014; 66(4):1142-1174. DOI:10.1124/pr.113.008300 · 17.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism through which the protein kinase Akt (also called PKB), protects the heart against acute ischaemia-reperfusion injury (IRI) is not clear. Here, we investigate whether Akt mediates its cardioprotective effect by modulating mitochondrial morphology. Transfection of HL-1 cardiac cells with constitutively active Akt (caAkt) changed mitochondrial morphology as evidenced by an increase in the proportion of cells displaying predominantly elongated mitochondria (73 ± 5.0 % caAkt vs 49 ± 5.8 % control: N=80 cells/group; p< 0.05). This effect was associated with delayed time taken to induce mitochondrial permeability transition pore (MPTP) opening (by 2.4 ± 0.5 fold; N=80 cells/group: p< 0.05); and reduced cell death following simulated IRI (32.8 ± 1.2 % caAkt vs 63.8 ± 5.6 % control: N=320 cells/group: p< 0.05). Similar effects on mitochondrial morphology, MPTP opening, and cell survival post-IRI, were demonstrated with pharmacological activation of Akt using the known cardioprotective cytokine, erythropoietin (EPO). The effect of Akt on inducing mitochondrial elongation was found to be dependent on the mitochondrial fusion protein, Mitofusin-1 (Mfn1), as ablation of Mfn1 in mouse embryonic fibroblasts (MEFs) abrogated Akt-mediated mitochondrial elongation. Finally, in vivo pre-treatment with EPO reduced myocardial infarct size (as a % of the area at risk) in adult mice subjected to IRI (26.2 ± 2.6 % with EPO vs 46.1 ± 6.5 % in control; N=7/group: p< 0.05), and reduced the proportion of cells displaying myofibrillar disarray and mitochondrial fragmentation observed by electron microscopy in adult murine hearts subjected to ischaemia from 5.8 ± 1.0 % to 2.2 ± 1.0 % (N=5 hearts/group; p< 0.05). In conclusion, we found that either genetic or pharmacological activation of Akt protected the heart against acute ischaemia-reperfusion injury by modulating mitochondrial morphology.
    Thrombosis and Haemostasis 09/2014; 113(1). DOI:10.1160/TH14-07-0592 · 4.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives Remote ischaemic preconditioning (RIPC), using brief cycles of limb ischaemia/reperfusion, is a non-invasive, low-cost intervention that may reduce perioperative myocardial injury (PMI) in patients undergoing cardiac surgery. We investigated whether RIPC can also improve short-term clinical outcomes. Methods One hundred and eighty patients undergoing elective coronary artery bypass graft (CABG) surgery and/or valve surgery were randomised to receive either RIPC (2–5 min cycles of simultaneous upper arm and thigh cuff inflation/deflation; N=90) or control (uninflated cuffs placed on the upper arm and thigh; N=90). The study primary end point was PMI, measured by 72 h area under the curve (AUC) serum high-sensitive troponin-T (hsTnT); secondary end point included short-term clinical outcomes. Results RIPC reduced PMI magnitude by 26% (−9.303 difference (CI −15.618 to −2.987) 72 h hsTnT-AUC; p=0.003) compared with control. There was also evidence that RIPC reduced the incidence of postoperative atrial fibrillation by 54% (11% RIPC vs 24% control; p=0.031) and decreased the incidence of acute kidney injury by 48% (10.0% RIPC vs 21.0% control; p=0.063), and intensive care unit stay by 1 day (2.0 days RIPC (CI 1.0 to 4.0) vs 3.0 days control (CI 2.0 to 4.5); p=0.043). In a post hoc analysis, we found that control patients administered intravenous glyceryl trinitrate (GTN) intraoperatively sustained 39% less PMI compared with those not receiving GTN, and RIPC did not appear to reduce PMI in patients given GTN. Conclusions RIPC reduced the extent of PMI in patients undergoing CABG and/or valve surgery. RIPC may also have beneficial effects on short-term clinical outcomes, although this will need to be confirmed in future studies. Trial registration number ID: NCT00397163.
    Heart (British Cardiac Society) 09/2014; 101(3). DOI:10.1136/heartjnl-2014-306178 · 5.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES This study aimed to determine whether remote ischemic conditioning (RIC) initiated prior to primary percutaneous coronary intervention (PPCI) could reduce myocardial infarct (MI) size in patients presenting with ST-segment elevation myocardial infarction. BACKGROUND RIC, using transient limb ischemia and reperfusion, can protect the heart against acute ischemia-reperfusion injury. Whether RIC can reduce MI size, assessed by cardiac magnetic resonance (CMR), is unknown. METHODS We randomly assigned 197 ST-segment elevation myocardial infarction patients with TIMI (Thrombolysis In Myocardial Infarction) flow grade 0 to receive RIC (four 5-min cycles of upper arm cuff inflation/deflation) or control (uninflated cuff placed on upper arm for 40 min) protocols prior to PPCI. The primary study endpoint was MI size, measured by CMR in 83 subjects on days 3 to 6 after admission. RESULTS RIC reduced MI size by 27%, when compared with the MI size of control subjects (18.0 +/- 10% [n = 40] vs. 24.5 +/- 12.0% [n = 43]; p = 0.009). At 24 h, high-sensitivity troponin T was lower with RIC (2,296 +/- 263 ng/l [n = 89] vs. 2,736 +/- 325 ng/l [n = 84]; p = 0.037). RIC also reduced the extent of myocardial edema measured by T-2-mapping CMR (28.5 +/- 9.0% vs. 35.1 +/- 10.0%; p = 0.003) and lowered mean T-2 values (68.7 +/- 5.8 ms vs. 73.1 +/- 6.1 ms; p = 0.001), precluding the use of CMR edema imaging to correctly estimate the area at risk. Using CMR-independent coronary angiography jeopardy scores to estimate the area at risk, RIC, when compared with the control protocol, was found to significantly improve the myocardial salvage index (0.42 +/- 0.29 vs. 0.28 +/- 0.29; p = 0.03). CONCLUSIONS This randomized study demonstrated that in ST-segment elevation myocardial infarction patients treated by PPCI, RIC, initiated prior to PPCI, reduced MI size, increased myocardial salvage, and reduced myocardial edema. (C) 2015 by the American College of Cardiology Foundation.
    JACC Cardiovascular Interventions 09/2014; 8(1). DOI:10.1016/j.jcin.2014.05.015 · 7.35 Impact Factor

Publication Stats

10k Citations
1,334.70 Total Impact Points


  • 2015
    • National Institute for Health Research
      Londinium, England, United Kingdom
  • 2008–2015
    • University College London
      • Institute of Cardiovascular Science
      Londinium, England, United Kingdom
  • 2014
    • University of Cape Town
      Kaapstad, Western Cape, South Africa
  • 2010–2014
    • Liverpool Heart And Chest Hospital
      Liverpool, England, United Kingdom
    • Duke University
      Durham, North Carolina, United States
  • 2013
    • Università degli Studi di Torino
      Torino, Piedmont, Italy
    • Oxford University Hospitals NHS Trust
      • Department of Cardiovascular Medicine
      Oxford, England, United Kingdom
  • 2011–2013
    • University College London Hospitals NHS Foundation Trust
      • Department of Cardiology
      Londinium, England, United Kingdom
  • 2012
    • University of California, San Diego
      • Skaggs School of Pharmacy and Pharmaceutical Sciences
      San Diego, CA, United States
  • 2009
    • WWF United Kingdom
      Londinium, England, United Kingdom
  • 2005–2008
    • Novo Nordisk
      København, Capital Region, Denmark
    • Chelsea and Westminster Hospital NHS Foundation Trust
      Londinium, England, United Kingdom
  • 2003–2007
    • UCL Eastman Dental Institute
      Londinium, England, United Kingdom