Jessica L. Blois

University of California, Merced, Merced, California, United States

Are you Jessica L. Blois?

Claim your profile

Publications (30)186.42 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Climate change will require novel conservation strategies. One such tactic is a coarse-filter approach that focuses on conserving nature's stage (CNS) rather than the actors (individual species). However, there is a temporal mismatch between the long-term goals of conservation and the short-term nature of most ecological studies, which leaves many assumptions untested. Paleoecology provides a valuable perspective on coarse-filter strategies by marshaling the natural experiments of the past to contextualize extinction risk due to the emerging impacts of climate change and anthropogenic threats. We reviewed examples from the paleoecological record that highlight the strengths, opportunities, and caveats of a CNS approach. We focused on the near-time geological past of the Quaternary, during which species were subjected to widespread changes in climate and concomitant changes in the physical environment in general. Species experienced a range of individualistic responses to these changes, including community turnover and novel associations, extinction and speciation, range shifts, changes in local richness and evenness, and both equilibrium and disequilibrium responses. Due to the dynamic nature of species responses to Quaternary climate change, a coarse-filter strategy may be appropriate for many taxa because it can accommodate dynamic processes. However, conservationists should also consider that the persistence of landforms varies across space and time, which could have potential long-term consequences for geodiversity and thus biodiversity. © 2015 Society for Conservation Biology.
    Conservation Biology 04/2015; 29(3). DOI:10.1111/cobi.12504 · 4.32 Impact Factor
  • Stephen T Jackson, Jessica L Blois
    [Show abstract] [Hide abstract]
    ABSTRACT: Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a "missing middle": Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit.
    Proceedings of the National Academy of Sciences 04/2015; 112(16):4915-21. DOI:10.1073/pnas.1403664111 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: Fossil records are being increasingly used to help understand the consequences of climate change for biodiversity. Pollen records from the late Quaternary are among the most commonly used fossil data, but pollen-based inferences of biodiversity can potentially be confounded by spatial and taxonomic uncertainties and the influence of non-climatic abiotic factors such as soils on vegetation–climate relationships. Using paired pollen and vegetation inventories, we assess the fidelity of pollen-based estimates of compositional turnover of vegetation along environmental gradients given various sources of uncertainty. Location: Eastern United States. Methods: We used modern pollen records and forest composition data from Forest Inventory and Analysis (FIA) plots to fit generalized dissimilarity models. To address how uncertainties in pollen records affect estimates of turnover, we coarsened the vegetation data spatially from individual plots to 10- and 30-arcmin resolution and taxonomically from species to genus. To determine whether soil properties influenced turnover, we used deviance partitioning between models including climate or soil variables versus models with a combination of both. Results: Pollen-based estimates of turnover were highly correlated with those based on FIA data, but tended to be lower, mainly due to differences in taxonomic resolution and secondarily to differences in spatial resolution. Neither spatial nor taxonomic uncertainty substantially reduced the correlation between pollen- and FIA-based estimates of turnover. FIA data best matched pollen records when they were aggregated to genus and 30-arcmin resolution. Vegetation–climate relationships were similar across datasets, although models sometimes differed. The influence of soil variables was negligible compared with climate variables and did not improve model fit. Pollen thresholds did not greatly affect the form and strength of pollen–vegetation relationships. Main conclusions: Pollen can act as a robust proxy for vegetation turnover, thereby supporting the use of pollen-based estimates of turnover to predict temporal changes in vegetation.
    Global Ecology and Biogeography 03/2015; DOI:10.1111/geb.12300 · 7.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background/Question/Methods Background: Marine lakes are variously isolated bodies of water that formed after the Last Glacial Maximum as rising seas flooded inland valleys. Marine lakes provide novel opportunities for testing island theory that was developed primarily in terrestrial settings, such as the species-area relationship of the classical Equilibrium Model, and patterns of evolution such as the Island Rule. They also offer two perspectives on the emerging General Dynamic Model of oceanic island biogeography. On the one hand, marine lakes of different depths are different ages and therefore may represent modern analogs of stages in the formation of individual lakes; modern shallow lakes representing inception and early-developmental stages, and modern deep lakes representing mature stages; some shallow lakes may be filling-in and represent senescent stages. On the other hand, the sediment deposited in each lake may hold a record of thousands of years of community assembly, dynamics, and disassembly. Questions: We are exploring how local and regional, biotic and abiotic, deterministic and stochastic processes, influence taxonomic, genetic, and functional diversity, and how these culminate in shared or unique attributes of modern communities. Methods: Between 2003-2013 we inventoried microbes, macroinvertebrates, phytoplankton and fishes, and measured abiotic characteristics of marine lakes in Palau. We also collected sediment cores of up to 12 m length from 8 of these lakes, for which we are constructing age models and analyzing biotic proxies, biolipids, and micro- and macro-fossils. Here, we report on patterns in modern community diversity across 16 lakes, and preliminary analyses of community similarity through time within several lakes. Results/Conclusions Species diversity in modern marine lakes is, in general, consistent with species-richness relationships such as the SAR. However, the relationship breaks down when considering lakes that are far inland and stratified: microbial diversity is elevated, and teleost diversity is reduced. These lakes appear to provide [1] novel categories of dysoxic and anoxic environments for microbes and [2] dramatically less oxygenated habitat for fishes than would be suggested simply by area or other metrics of overall lake-size. We discuss the potential for observing these transitions and corresponding effects on diversity through time using a combination of ITRAX, lipid biomarkers, and benthic macrofossils.
    99th ESA Annual Convention 2014; 08/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background/Question/Methods Predicting the response of biotic systems to environmental change remains one of the greatest challenges in ecology. During the last decade, studies have emphasized the use of species distribution models (SDMs) to predict climate-driven shifts in species distributions and extinction risk. SDMs usually are fit using only abiotic factors, even though other factors can modify the strength and/or the direction of abiotic drivers. Among these factors, biotic interactions are known to play a key role in determining species’ responses to climate change but the implementation of such interactions in SDMs remains limited. Alternative approaches to SDMs are multivariate tools that simultaneously model community structure and composition. These community level models (CLMs) can provide more reliable predictions for species distributions and community structure by accounting for patterns of co-occurrence (and ostensibly biotic interactions) between species in the model. However, this capacity remains largely unexplored. Using observed changes in plant associations (as recorded in fossil pollen records) in eastern North America and independent paleoclimate simulations, we tested the ability of five CLMs to forecast species distributions, species associations, and macroecological patterns across time. Specifically, we fit CLMs with current presence-absence data and hindcasted at 500-year intervals until 21 ka BP. Results/Conclusions Among the five CLMs, vector generalized additive model (VGAM) and vector Generalized Linear Model (VGLM) best predicted pollen taxon distribution, community composition and taxon richness (mean AUC: 0.85; mean Jaccard index between observed and predicted communities: 0.42; mean correlation between predicted and observed species richness: 0.75). In contrast, neural network (NNET) and classification and regression trees (CARTs) performed the worst (AUC: 0.75; Jaccard index: 0.55; species richness correlation: 0.5). However, multivariate adaptive regression spline (MARS) and NNET offered the best estimates of beta diversity (Sorensen index). All CLMs predictions were independent of species prevalence and their predictive ability decreased backwards through time. Projections remained reliable (AUC > 0.75) until the mid-Holocene (7 ka BP), decreased from 7 to 11 ka BP, and then remained very unreliable (AUC ~ 0.6) through the whole Pleistocene (from 11 ka to 21 ka BP). Our results show that predictive performance of CLMs differed between algorithms and consistently declined as climate and community dissimilarity with present increased. Ongoing research is comparing these results to SDMs to determine the extent to which CLM may complement, or represent an alternative to, species-level modeling.
    99th ESA Annual Convention 2014; 08/2014
  • Jessica L. Blois
    [Show abstract] [Hide abstract]
    ABSTRACT: Background/Question/Methods Potential negative impacts of the high rate and magnitude of future climate change on biodiversity are of increasing concern to the conservation and biogeography communities. In response, many studies aim to predict the distributions of species based on scenarios of future climate change, and from these predictions, estimate other biodiversity properties such as species richness or extinction risk. Many such models use only climatic or habitat variables as predictors, but other factors such as dispersal lags and interactions between species can greatly influence the distributions of species and communities through time and across space. However, quantifying the relative influence of climate or habitat, dispersal limitation, and biotic interactions on species and communities is not straightforward. Here, I use species lists from late Quaternary fossil localities in North America paired with downscaled paleoclimate simulations to assess potential causes of species and community changes across space and time. Using complementary analyses such as generalized dissimilarity modeling, analyses of species pairs, and species distribution modeling, I focus in particular on disentangling the relative contributions of climate versus other mechanisms of change. Results/Conclusions Climate strongly structures both species distributions and community attributes across space and time at broad spatial and temporal scales. Generalized dissimilarity models show that climate influences dissimilarity within fossil pollen assemblages across eastern North America and that communities are structured similarly across spatial and temporal climate gradients. Additionally, most of the non-randomly associated species pairs can be explained by climatic or spatial attributes of sites (mean = 83% of the aggregated pairs and 93% of the segregated pairs across all time slices), and biotic interaction is not the most parsimonious explanation of the non-random species associations. However, the influence of climate is variable across space and time. In the latest Pleistocene, climate explains less variation in community dissimilarity than in the Holocene, indicating that dispersal limitation or species interactions may be more important. Additionally, most non-random species associations that are potentially attributed to a biotic interaction occur during the latest Pleistocene. This implies that, at least at broad scales, climate-based models are relatively good for predicting changes in species and communities. However, care needs to be taken when predicting changes far into the future or across large magnitude climate changes, when there is greater potential for no-analog conditions.
    99th ESA Annual Convention 2014; 08/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Climate refugia, locations where taxa survive periods of regionally adverse climate, are thought to be critical for maintaining biodiversity through the glacial–interglacial climate changes of the Quaternary. A critical research need is to better integrate and reconcile the three major lines of evidence used to infer the existence of past refugia – fossil records, species distribution models and phylogeographic surveys – in order to characterize the complex spatiotemporal trajectories of species and populations in and out of refugia. Here we review the complementary strengths, limitations and new advances for these three approaches. We provide case studies to illustrate their combined application, and point the way towards new opportunities for synthesizing these disparate lines of evidence. Case studies with European beech, Qinghai spruce and Douglas-fir illustrate how the combination of these three approaches successfully resolves complex species histories not attainable from any one approach. Promising new statistical techniques can capitalize on the strengths of each method and provide a robust quantitative reconstruction of species history. Studying past refugia can help identify contemporary refugia and clarify their conservation significance, in particular by elucidating the fine-scale processes and the particular geographic locations that buffer species against rapidly changing climate.
    New Phytologist 07/2014; 204(1):37-54. DOI:10.1111/nph.12929 · 6.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental conditions, dispersal lags, and interactions among species are major factors structuring communities through time and across space. Ecologists have emphasized the importance of biotic interactions in determining local patterns of species association. In contrast, abiotic limits, dispersal limitation, and historical factors have commonly been invoked to explain community structure patterns at larger spatiotemporal scales, such as the appearance of late Pleistocene no-analog communities or latitudinal gradients of species richness in both modern and fossil assemblages. Quantifying the relative influence of these processes on species co-occurrence patterns is not straightforward. We provide a framework for assessing causes of species associations by combining a null-model analysis of co-occurrence with additional analyses of climatic differences and spatial pattern for pairs of pollen taxa that are significantly associated across geographic space.We tested this framework with data on associations among 106 fossil pollen taxa and paleoclimate simulations from eastern North America across the late Quaternary. The number and proportion of significantly associated taxon pairs increased over time, but only 449 of 56 194 taxon pairs were significantly different from random. Within this significant subset of pollen taxa, biotic interactions were rarely the exclusive cause of associations. Instead, climatic or spatial differences among sites were most frequently associated with significant patterns of taxon association. Most taxon pairs that exhibited co-occurrence patterns indicative of biotic interactions at one time did not exhibit significant associations at other times. Evidence for environmental filtering and dispersal limitation was weakest for aggregated pairs between 16 and 11 kyr BP, suggesting enhanced importance of positive species interactions during this interval. The framework can thus be used to identify species associations that may reflect biotic interactions because these associations are not tied to environmental or spatial differences. Furthermore, temporally repeated analyses of spatial associations can reveal whether such associations persist through time.
    Ecography 07/2014; 37:1095-1108. DOI:10.1111/ecog.00779 · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As the earth system moves to a novel state, model systems (experimental, observational, paleoecological) are needed to assess and improve the predictive accuracy of ecological models under environments with no contemporary analog. In recent years, we have intensively studied the no-analog plant associations and climates in eastern North America during the last deglaciation to better constrain their spatiotemporal distribution, test hypotheses about climatic and megaherbivory controls, and assess the accuracy of species-and community-level models. The formation of no-analog plant associations was asynchronous, beginning first in the south-central United States; at sites in the north-central United States, it is linked to declining megafaunal abundances. Insolation and temperature were more seasonal than present, creating climates currently nonexistent in North America, and shifting species–climate relationships for some taxa. These shifts pose a common challenge to empirical paleoclimatic reconstructions, species distribution models (SDMs), and conservation–optimization models based on SDMs. Steps forward include combining recent and paleoecological data to more fully describe species' fundamental niches, employing community-level models to model shifts in species interactions under no-analog climates, and assimilating paleoecological data with mechanistic ecosystem models. Accurately modeling species interactions under novel environments remains a fundamental challenge for all forms of ecological models.
    Annals of the New York Academy of Sciences 09/2013; 1297:29-43. DOI:10.1111/nyas.12226 · 4.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biotic interactions drive key ecological and evolutionary processes and mediate ecosystem responses to climate change. The direction, frequency, and intensity of biotic interactions can in turn be altered by climate change. Understanding the complex interplay between climate and biotic interactions is thus essential for fully anticipating how ecosystems will respond to the fast rates of current warming, which are unprecedented since the end of the last glacial period. We highlight episodes of climate change that have disrupted ecosystems and trophic interactions over time scales ranging from years to millennia by changing species' relative abundances and geographic ranges, causing extinctions, and creating transient and novel communities dominated by generalist species and interactions. These patterns emerge repeatedly across disparate temporal and spatial scales, suggesting the possibility of similar underlying processes. Based on these findings, we identify knowledge gaps and fruitful areas for research that will further our understanding of the effects of climate change on ecosystems.
    Science 08/2013; 341(6145):499-504. DOI:10.1126/science.1237184 · 31.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: "Space-for-time" substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption-that drivers of spatial gradients of species composition also drive temporal changes in diversity-rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as "time-for-time" predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.
    Proceedings of the National Academy of Sciences 05/2013; DOI:10.1073/pnas.1220228110 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Projecting the future composition and function of communities is a major challenge, and there is an urgent need to develop, improve, and test the predictive capacity of ecological models under different climate states. We tested the effect of climate on spatial patterns of plant community composition over the past 21 000 yr, focusing on whether the spatial relationships between environmental distance and compositional dissimilarity are stable over time. We used a network of fossil-pollen sites in eastern North America, combined with paleoclimate simulations from the Last Glacial Maximum (LGM; 21 000 calibrated years before present, 21 kyr BP) to the present. We modeled relationships between climate, geography, and compositional dissimilarity at 1 kyr periods using generalized dissimilarity modeling (GDM) and determined the strongest predictors of compositional dissimilarity. We assessed the performance of models calibrated for one time period (e.g. 14 kyr BP) in predicting patterns in the same period as well as at other times (e.g. 12 kyr BP), and tested whether predictive performance was related to the magnitude of climate change between the calibration and prediction time periods. Finally, we examined whether pooling data from multiple time periods improved predictive performance. Models explained 32 to 51% of compositional dissimilarity between locations within any single time period. The best set of predictors changed across time, with summer temperature and geographic distance the strongest predictors of compositional dissimilarity for most time periods. Models built for one time period explained turnover during nearby time periods relatively well, but performance decayed across time and with increasing climate change. Results were similar regardless of whether models were projected forward or backward through time, and did not improve when data were pooled across time. GDM predicts well the spatial patterns of past compositional dissimilarity and holds promise for modeling the drivers of compositional dissimilarity across space and time. However, the modeled relationships between compositional turnover and environmental distance are non-stationary, so caution is needed when predicting across periods of significant climatic change.
    Ecography 04/2013; 36(4-4):460-473. DOI:10.1111/j.1600-0587.2012.07852.x · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Data, whether images, measurements, counts, occurrences, or character codings, are a cornerstone of vertebrate paleontology. Every published paper,master’s thesis, and doctoral dissertation relies on these data to document patterns and processes in evolution, ecology, taphonomy, geography, geologic time, and functional morphology, to name just a few. In turn, the vertebrate paleontology community relies on published data in order to reproduce and verify others’ work, as well as to expand upon published analyses in new ways without having to reconstitute data sets that have been used by earlier authors and to accurately preserve data for future generations of researchers. Here, we review several databases that are of interest to vertebrate paleontologists and strongly advocate for more deposition of basic research data in publicly accessible databases by vertebrate paleontologists.
    Journal of Vertebrate Paleontology 01/2013; 33(1):13-28. DOI:10.1080/02724634.2012.716114 · 2.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age–depth relationships in sedimentary archives such as lakes, wetlands and bogs are non-linear with irregular probability distributions associated with calibrated radiocarbon dates. Bayesian approaches are thus well-suited to understanding relationships between age and depth for use in paleoecological studies. Bayesian models for the accumulation of sediment and organic matter within basins combine dated material from one or more records with prior information about the behavior of deposition times (yr/cm) based on expert knowledge. Well-informed priors are essential to good modeling of the age–depth relationship, but are particularly important in cases where data may be sparse (e.g., few radiocarbon dates), or unclear (e.g., age-reversals, coincident dates, age offsets, outliers and dates within a radiocarbon plateau).Here we assessed Holocene deposition times using 204 age–depth models obtained from the Neotoma Paleoecology Database (www.neotomadb.org) for both lacustrine and palustrine environments across the northeastern United States. These age–depth models were augmented using biostratigraphic events identifiable within pollen records from the northeastern United States during the Holocene and late-Pleistocene.Deposition times are significantly related to depositional environment (palustrine and lacustrine), sediment age, and sediment depth. Spatial variables had non-significant relationships with deposition time when site effects were considered. The best-fit model was a generalized additive mixed model that relates deposition time to age, stratified by depositional environment with site as a random factor. The best-fit model accounts for 63.3% of the total deviance in deposition times. The strongly increasing accumulation rates of the last 500–1000 years indicate that gamma distributions describing lacustrine deposition times (α = 1.08, β = 18.28) and palustrine deposition times (α = 1.23, β = 22.32) for the entire Holocene may be insufficient for Bayesian approaches since there is strong variation in the gamma parameters both in the most recent sediments and throughout the Holocene. Time-averaged gamma distributions for lacustrine (α = 1.35, β = 19.64) and palustrine samples (α = 1.40, β = 20.72) show lower overall deposition times, but variability remains. The variation in gamma parameters through time may require the use of multiple gamma distributions during the Holocene to generate accurate age–depth models. We present estimates of gamma parameters for deposition times at 1000 yr intervals. The parameters generated in this study can be used directly within Bacon to act as Bayesian priors for sedimentary age models.
    Quaternary Science Reviews 08/2012; 48:54–60. DOI:10.1016/j.quascirev.2012.05.019 · 4.57 Impact Factor
  • Source
    Proceedings of the National Academy of Sciences 07/2012; 109(34):E2243; author reply E2245-7. DOI:10.1073/pnas.1206196109 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Empirically derived species distributions models (SDMs) are increasingly relied upon to forecast species vulnerabilities to future climate change. However, many of the assumptions of SDMs may be violated when they are used to project species distributions across significant climate change events. In particular, SDM's in theory assume stable fundamental niches, but in practice, they assume stable realized niches. The assumption of a fixed realized niche relative to climate variables remains unlikely for various reasons, particularly if novel future climates open up currently unavailable portions of species fundamental niches. To demonstrate this effect, we compare the climate distributions for fossil-pollen data from 21 to 15 ka bp (relying on paleoclimate simulations) when communities and climates with no modern analog were common across North America to observed modern pollen assemblages. We test how well SDMs are able to project 20th century pollen-based taxon distributions with models calibrated using data from 21 to 15 ka. We find that taxa which were abundant in areas with no-analog late glacial climates, such as Fraxinus, Ostrya/Carpinus and Ulmus, substantially shifted their realized niches from the late glacial period to present. SDMs for these taxa had low predictive accuracy when projected to modern climates despite demonstrating high predictive accuracy for late glacial pollen distributions. For other taxa, e.g. Quercus, Picea, Pinus strobus, had relatively stable realized niches and models for these taxa tended to have higher predictive accuracy when projected to present. Our findings reinforce the point that a realized niche at any one time often represents only a subset of the climate conditions in which a taxon can persist. Projections from SDMs into future climate conditions that are based solely on contemporary realized distributions are potentially misleading for assessing the vulnerability of species to future climate change.
    Global Change Biology 05/2012; 18(5-5):1698-1713. DOI:10.1111/J.1365-2486.2011.02635.X · 8.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth's climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to the carbon cycle resulted in a net release of the greenhouse gases CO(2) and CH(4) to the atmosphere; and changes in atmosphere and ocean circulation affected the global distribution and fluxes of water and heat. Here we summarize a major effort by the paleoclimate research community to characterize these changes through the development of well-dated, high-resolution records of the deep and intermediate ocean as well as surface climate. Our synthesis indicates that the superposition of two modes explains much of the variability in regional and global climate during the last deglaciation, with a strong association between the first mode and variations in greenhouse gases, and between the second mode and variations in the Atlantic meridional overturning circulation.
    Proceedings of the National Academy of Sciences 02/2012; 109(19):E1134-42. DOI:10.1073/pnas.1116619109 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Quaternary paleoecology and paleoclimatology, compositionally dissimilar fossil assemblages usually indicate dissimilar environments; this relationship underpins assemblage-level techniques for paleoenvironmental reconstruction such as mutual climatic ranges or the modern analog technique. However, there has been relatively little investigation into the form of the relationship between compositional dissimilarity and climatic dissimilarity. Here we apply generalized dissimilarity modeling (GDM; Ferrier et al. 2007) as a tool for modeling the expected non-linear relationships between compositional and climatic dissimilarity. We use the CCSM3.0 transient paleoclimatic simulations from the SynTrace working group (Liu et al. 2009) and a new generation of fossil pollen maps from eastern North America (Blois et al. 2011) to 1) assess the spatial relationships between compositional dissimilarity and climatic dissimilarity and 2) whether these spatial relationships change over time. We used a taxonomic list of 106 genus-level pollen types, six climatic variables (winter precipitation and mean temperature, summer precipitation and temperature, seasonality of precipitation, and seasonality of temperature) that were chosen to minimize collinearity, and a cross-referenced pollen and climate dataset mapped for time slices spaced 1000 years apart. When GDM was trained for one time slice, the correlation between predicted and observed spatial patterns of community dissimilarity for other times ranged between 0.3 and 0.73. The selection of climatic predictor variables changed over time, as did the form of the relationship between compositional turnover and climatic predictors. Summer temperature was the only variable selected for all time periods. These results thus suggest that the relationship between compositional dissimilarity in pollen assemblages (and, by implication, beta diversity in plant communities) and climatic dissimilarity can change over time, for reasons to be further studied.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PalEON is a multidisciplinary project that combines paleo and modern ecological data with state-of-the-art statistical and modelling tools to examine the interactions between climate, fire and vegetation during the past two millennia in the northeastern United States. A fundamental challenge for PalEON (and paleo research more broadly) is to improve age modelling to yield more accurate sediment-core chronologies. To address this challenge, we assessed sedimentation rates and their controls for 218 lakes and mires in the northeastern U.S. Sedimentation rates (yr/cm) were calculated from age-depth models, which were obtained from the Neotoma database (www.neotomadb.org) and other contributed pollen records. The age models were recalibrated to IntCal09 and augmented in some cases using biostratigraphic markers (Picea decline, 16 kcal BP - 10.5 kcal BP; Quercus rise, 12 - 9.1 kcal BP; and Alnus decline, 11.5 - 10.6 kcal BP) as described in Blois et al. (2011). Relationships between sedimentation rates and sediment age, site longitude, and depositional environment (lacustrine or mire) are significant but weak. There are clear and significant links between variations in the NGRIP record of δ18O and sedimentation in mires across the PalEON region, but no links to lacustrine sedimentation rates. This result indicates that super-regional climatic control of primary productivity, and thus autochthonic sediment deposition, dominates in mires while deposition in lacustrine basins may be driven primarily by local and regional factors including watershed size, surficial materials,and regional vegetation. The shape of the gamma probability functions that best describe sedimentation rate distributions are calculated and presented here for use as priors in Bayesian age modelling applications such as BACON (Blaauw and Christen, in press). Future applications of this research are also discussed.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mapping past vegetation dynamics from heterogeneous databases of fossil-pollen records must face the challenge of temporal uncertainty. The growing collection of densely sampled fossil-pollen records with accurate and precise chronologies allows us to develop new methods to assess and reduce this uncertainty. Here, we test our methods in the context of vegetation changes in eastern North America during the abrupt climate changes of the last deglaciation. We use the network of fossil-pollen records in the Neotoma Paleoecology Database (www.neotomadb.org) and data contributed by individual investigators. Because many of these records were collected decades before the current generation of 14C and age-model technologies, we first developed a framework to assess the overall reliability of 14C chronologies by systematically evaluating individual 14C ages and associated chronologies. We developed a qualitative ranking scheme for individual 14C ages that combines information about their accuracy and precision. ‘Benchmark’ pollen records were defined to have at least one 14C age with an accuracy within 250 years and a precision less than 500 years that is within 1000 years of the time interval of interest, and at least five pollen samples per 1000 years across this time period. Only 22 of >350 late-Pleistocene pollen cores in eastern North America met the benchmark criteria.We then used Bayesian change-point analysis to identify widespread ecological events (Picea decline, Quercus rise, and Alnus decline), and interpolated the ages of these events from the benchmark sites to non-benchmark sites. Leave-one-out cross-validation analyses with the benchmark sites indicated that the spatial error associated with interpolation was less for inverse distance-weighting (IDW) than thin-plate splines (TPS) and was about 500 years for the three biotic events. By comparison, the difference between the original ages of events at poorly constrained sites and the biostratigraphic ages interpolated from the benchmark sites was close to 1000 years, suggesting that the use of biostratigraphic ages can significantly improve the age models for poorly constrained sites. Overall, these analyses suggest that the temporal resolution of multi-site syntheses of late-Pleistocene fossil-pollen data in eastern North America is about 500 years, a resolution that allows analysis of ecological responses to millennial-scale climate change during the last deglaciation.Highlights► We develop a conceptual framework for identifying ‘benchmark’ pollen records. ► We applied the framework to reduce uncertainty in late-Pleistocene pollen cores. ► The effective temporal limit to late-Pleistocene vegetation syntheses is ∼500 years. ► This approach reduces uncertainty within many pollen cores in eastern North America. ► Our knowledge of vegetation responses to past climate changes is greatly enhanced.
    Quaternary Science Reviews 07/2011; 30(15-16):1926-1939. DOI:10.1016/j.quascirev.2011.04.017 · 4.57 Impact Factor

Publication Stats

390 Citations
186.42 Total Impact Points

Institutions

  • 2013–2015
    • University of California, Merced
      • • Department of Life and Environmental Sciences
      • • School of Natural Sciences
      Merced, California, United States
  • 2010–2012
    • University of Wisconsin, Madison
      • Center for Climatic Research
      Madison, MS, United States
  • 2007–2010
    • Stanford University
      • Department of Biology
      Palo Alto, CA, United States
  • 2006
    • Humboldt State University
      Arcata, California, United States