Huchen Zhou

Shanghai Jiao Tong University, Shanghai, Shanghai Shi, China

Are you Huchen Zhou?

Claim your profile

Publications (22)96.77 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Human African trypanosomiasis is a fatal parasitic infection caused by the protozoan Trypanosoma brucei. The development of novel antitrypanosomal agents is urgently needed. Here we report the synthesis and structure-activity relationship of a new class of benzoxaboroles as antitrypanosomal agents. These compounds showed antiparasitic IC50 values ranging from 4.02 to 0.03 μg/mL and satisfactory cytotoxicity profile. Three of the lead compounds were demonstrated to cure the parasitic infection in a murine acute infection model. The structure-activity relationship of the pyrrolobenzoxaboroles are also discussed.
    European Journal of Medicinal Chemistry 04/2014; 81C:59-75. · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new class of benzoxaboroles were synthesized as antitrypanosomal agents and showed IC50 as low as 0.03 μg/mL. Three of the lead compounds eliminated parasitic infection in a murine model.
    European Journal of Medicinal Chemistry. 01/2014; 81:59–75.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aminoacyl-tRNA synthetases (aaRSs) are enzymes that catalyze the transfer of amino acids to their cognate tRNA. They play a pivotal role in protein synthesis and are essential for cell growth and survival. The aaRSs are one of the leading targets for development of antibiotic agents. In this review, we mainly focused on aaRS inhibitor discovery and development using in silico methods including virtual screening and structure-based drug design. These computational methods are relatively fast and cheap, and are proving to be of great benefit for the rational development of more potent aaRS inhibitors and other pharmaceutical agents that may usher in a much needed generation of new antibiotics.
    International Journal of Molecular Sciences 01/2014; 15(1):1358-73. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human African trypanosomiasis (HAT) is one of the most neglected diseases in the tropic regions, which is fatal if not treated in time. There is an urgent need for new therapeutics, especially those in new chemical classes. Leucyl-tRNA synthetase (LeuRS) has been paid much attention as a recently clinically validated antimicrobial target. Our group has previously reported T. brucei LeuRS (TbLeuRS) inhibitors, including benzoxaboroles targeting the editing site and pyrrolinones targeting the synthetic site. Here we report the discovery of N-(4-sulfamoylphenyl)thioureas as a new class of TbLeuRS inhibitors. The R(1) and R(2) groups, reminiscent of the leucyl and adenyl regions of aa-AMP and aa-AMS, were optimized to result in a significant 13-fold increase of inhibitory activity (compound , IC50 = 13.7 μM). Aided by ligand-protein docking, the 1,3-substitution at the central phenyl ring was predicted and proved to give significantly improved activity (, IC50 = 1.1 μM). This work provided a new scaffold for the exploration of novel inhibitors against TbLeuRS, which may become potential therapeutics for the treatment of HAT.
    Organic & Biomolecular Chemistry 07/2013; · 3.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Signaling through the Rho family of small GTPases has been intensely investigated for its crucial roles in a wide variety of human diseases. Although RhoA and Rac1 signaling pathways are frequently exploited with the aid of effective small molecule modulators, studies of the Cdc42 subclass have lagged because of a lack of such means. We have applied high-throughput in silico screening and identified compounds that are able to fit into the surface groove of Cdc42, which is critical for guanine nucleotide exchange factor binding. Based on the interaction between Cdc42 and intersectin (ITSN), a specific Cdc42 guanine nucleotide exchange factor, we discovered compounds that rendered ITSN-like interactions in the binding pocket. By using in vitro binding and imaging as well as biochemical and cell-based assays, we demonstrated that ZCL278 has emerged as a selective Cdc42 small molecule modulator that directly binds to Cdc42 and inhibits its functions. In Swiss 3T3 fibroblast cultures, ZCL278 abolished microspike formation and disrupted GM130-docked Golgi structures, two of the most prominent Cdc42-mediated subcellular events. ZCL278 reduces the perinuclear accumulation of active Cdc42 in contrast to NSC23766, a selective Rac inhibitor. ZCL278 suppresses Cdc42-mediated neuronal branching and growth cone dynamics as well as actin-based motility and migration in a metastatic prostate cancer cell line (i.e., PC-3) without disrupting cell viability. Thus, ZCL278 is a small molecule that specifically targets Cdc42-ITSN interaction and inhibits Cdc42-mediated cellular processes, thus providing a powerful tool for research of Cdc42 subclass of Rho GTPases in human pathogenesis, such as those of cancer and neurological disorders.
    Proceedings of the National Academy of Sciences 01/2013; · 9.81 Impact Factor
  • Yaxue Zhao, Feng Zhou, Huchen Zhou, Haibin Su
    [Show abstract] [Hide abstract]
    ABSTRACT: The bonding characteristics in cysteine-gold cluster complexes represented by thiolate (Au(n)·Cys(S) (n = 1, 3, 5, 7)) and thiol (Au(n)·Cys(SH) (n = 2, 4, 6, 8)) is investigated by density functional theory with 6-31G(d,p) and Lanl2DZ hybrid basis sets. The complexes exhibit very different bonding characteristic between these two forms. In the Au(n)·Cys(S) complexes, the charge transfers from gold clusters to sulfur atoms. The number of S-Au bonds in the Au(n)·Cys(S) complexes evolves from one to two when n is greater than three. For n equals three, i.e. Au(3)·Cys(S), its ground state only has one S-Au bond. While the only S-Au bond in Au(1)·Cys(S) is mainly covalent, the nature of the S-Au bond in other thiolates is featured with the combination of covalent and donor-acceptor interactions. In particular, one stable isomer of Au(3)·Cys(S) with two S-Au bonds, which is 2 kcal mol(-1) higher in energy than the corresponding ground state, consists of one covalent and one donor-acceptor S-Au bond explicitly. Moreover, the localized three center two electron bonds are formed within the Au clusters, which facilitates the formation of the two S-Au bonds in Au(5)·Cys(S) and Au(7)·Cys(S) complexes. In the Au(n)·Cys(SH) complexes, the donor-acceptor interaction prevails in the Au-SH bond by transferring lone pair electrons from the sulfur atom to the adjacent gold atom. Interestingly, the orbital with much more 6s-component in Au(4)·Cys(SH) enhances the donor-acceptor bonding character, thus yields the strongest bonding among all the Au(n)·Cys(SH) complexes studied in this paper. In general, the bonding strength between gold clusters and cysteine is positively correlated with the S-Au overlap-weighted bond order, but negatively correlated with the S-Au bond length. Lastly, the covalent and donor-acceptor S-Au bond strength is computed to be 48 and 18 kcal mol(-1), respectively.
    Physical Chemistry Chemical Physics 12/2012; · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among the regulation mechanisms of cellular function, allosteric regulation is the most direct, rapid and efficient. Due to the wider receptor selectivity and lower target-based toxicity, compared with orthosteric ligands, allosteric modulators are expected to play a larger role in pharmaceutical research and development. However, current difficulties, such as a low affinity and unknown structural features of potential allosteric small-molecules, usually obstruct the discovery of allosteric modulators. In this study, we compared known allosteric modulators with various compounds from different databases to unveil the structural and qualitative characteristics of allosteric modulators. The results show that allosteric modulators generally contain more hydrophobic scaffolds and have a higher structural rigidity, i.e., less rotatable bonds and more rings. Based on this analysis, an empirical rule was defined to determine the structural requirements for an allosteric modulator. It was found that a large proportion of allosteric modulators (80%) can be successfully retrieved by this "allosteric-like" filter, which shows good discriminatory power in identifying allosteric modulators. Therefore, the study provides deeper insight into the chemical properties of allosteric modulators and has a good potential for the design or optimization of allosteric compounds.
    Journal of molecular graphics & modelling 08/2012; 38C:324-333. · 2.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the novel chalcone-benzoxaborole hybrids and their structure-activity relationship against Trypanosoma brucei parasites. The 4-NH(2) derivative 29 and 3-OMe derivative 43 were found to have excellent potency. The synergistic 4-NH(2)-3-OMe compound 49 showed an IC(50) of 0.010 μg/mL and resulted in 100% survival and zero parasitemia in a murine infection model, which represents one of the most potent compounds discovered to date from the benzoxaborole class that inhibit T. brucei growth.
    Journal of Medicinal Chemistry 02/2012; 55(7):3553-7. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of new boron-containing benzoxaborole compounds was designed and synthesized for a continuing structure-activity relationship (SAR) investigation to assess the antimalarial activity changes derived from side-chain structural variation, substituent modification on the benzene ring and removal of boron from five-membered oxaborole ring. This SAR study demonstrated that boron is required for the antimalarial activity, and discovered that three fluoro-substituted 7-(2-carboxyethyl)-1,3-dihydro-1-hydroxy-2,1-benzoxaboroles (9, 14 and 20) have excellent potencies (IC(50) 0.026-0.209 μM) against Plasmodium falciparum.
    Bioorganic & medicinal chemistry letters 02/2012; 22(3):1299-307. · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human African trypanosomiasis (HAT), caused by the protozoan parasite Trypanosoma brucei, is a neglected fatal disease. Leucyl-tRNA synthetase (LeuRS), which has been successfully applied in the development of antifungal agent, represents a potential antiprotozoal drug target. In this study, a 3D model of T. brucei LeuRS (TbLeuRS) synthetic active site was constructed and subjected to virtual screening using a combination of pharmacophore- and docking-based methods. A new 2-pyrrolinone scaffold was discovered and the structure-activity relationship (SAR) studies aided by the docking model and organic synthesis were carried out. Compounds with various substituents on R(1), R(2) and R(3) were synthesized and their SAR was discussed.
    Bioorganic & medicinal chemistry 02/2012; 20(3):1240-50. · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As the best-characterized ubiquitin-like protein (UBL), small ubiquitin-related modifier (SUMO) was found to conjugate with a number of proteins to regulate cellular functions including transcription, signal transduction, and cell cycle. While E1, E2 and E3 ligases are responsible for the forward SUMOylation reaction, SUMO-specific proteases (SENPs) reversibly remove SUMO from the SUMOylated proteins. Recently, SENP1 was found to be a potential therapeutic target for the treatment of prostate cancers, but the design and synthesis of its inhibitors have not been reported. We designed and synthesized a series of benzodiazepine-based SENP1 inhibitors, and they showed inhibitory activity as good as IC(50)=9.2μM (compound 38). The structure-activity relationship was also discussed.
    Bioorganic & medicinal chemistry letters 09/2011; 21(21):6389-92. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: African trypanosomiasis, caused by the proto zoal pathogen Trypanosoma brucei (T. brucei), is one of the most neglected tropical diseases that are in great need of new drugs. We report the design and synthesis of T. brucei leucyl-tRNA synthetase (TbLeuRS) inhibitors and their structure--activity relationship. Benzoxaborole was used as the core structure and C(6) was modified to achieve improved affinity based on docking results that showed further binding space at this position. Indeed, compounds with C(7) substitutions showed diminished activity due to clash with the eukaryote specific I4ae helix while substitutions at C(6) gave enhanced affinity. TbLeuRS inhibitors with IC(50) as low as 1.6 μM were discovered, and the structure-activity relationship was discussed. The most potent enzyme inhibitors also showed excellent T. brucei parasite growth inhibition activity. This is the first time that TbLeuRS inhibitors are reported, and this study suggests that leucyl-tRNA synthetase (LeuRS) could be a potential target for antiparasitic drug development.
    Journal of Medicinal Chemistry 02/2011; 54(5):1276-87. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The synthesis and characterization of highly challenging 2,3,6-trideoxy sugar nucleotides were described for the first time. The study of their hydrolysis kinetics in aqueous buffers provided insight into their application as glycosyl donors.
    Tetrahedron Letters - TETRAHEDRON LETT. 01/2011; 52(44):5799-5801.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of benzoxaborole antitrypanosomal agents and their structure−activity relationships on central linkage groups and different substitution patterns in the sulfur-linked series. The compounds showed in vitro growth inhibition IC50 values as low as 0.02 μg/mL and in vivo efficacy in acute murine infection models against Tryapnosoma brucei.Keywords (keywords): Tryapnosoma brucei; African trypanosomiasis; benzoxaborole
    Acs Medicinal Chemistry Letters. 04/2010; 1(4).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of phenoxy benzoxaboroles were synthesized and screened for their inhibitory activity against PDE4 and cytokine release. 5-(4-Cyanophenoxy)-2,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2728) showed potent activity both in vitro and in vivo. This compound is now in clinical development for the topical treatment of psoriasis and being pursued for the topical treatment of atopic dermatitis.
    Bioorganic & medicinal chemistry letters 05/2009; 19(8):2129-32. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A gene cluster (pol) essential for the biosynthesis of polyoxin, a nucleoside antibiotic widely used for the control of phytopathogenic fungi, was cloned from Streptomyces cacaoi. A 46,066-bp region was sequenced, and 20 of 39 of the putative open reading frames were defined as necessary for polyoxin biosynthesis as evidenced by its production in a heterologous host, Streptomyces lividans TK24. The role of PolO and PolA in polyoxin synthesis was demonstrated by in vivo experiments, and their functions were unambiguously characterized as O-carbamoyltransferase and UMP-enolpyruvyltransferase, respectively, by in vitro experiments, which enabled the production of a modified compound differing slightly from that proposed earlier. These studies should provide a solid foundation for the elucidation of the molecular mechanisms for polyoxin biosynthesis, and set the stage for combinatorial biosynthesis using genes encoding different pathways for nucleoside antibiotics.
    Journal of Biological Chemistry 04/2009; 284(16):10627-10638. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Signaling through the Rho family of small GTPases has been increasingly investigated for their involvement in a wide variety of diseases such as cardiovascular, pulmonary, and neurological disorders as well as cancer. Rho GTPases are a subfamily of the Ras superfamily proteins which play essential roles in a number of biological processes, especially in the regulation of cell shape change, cytokinesis, cell adhesion, and cell migration. Many of these processes demonstrate a common theme: the rapid and dynamic reorganization of actin cytoskeleton of which Rho signaling has now emerged as a major switch control. The involvement of dynamic changes of Rho GTPases in disease states underscores the need to produce effective inhibitors for their therapeutic applications. Fasudil and Y-27632, with many newer additions, are two classes of widely used chemical compounds that inhibit Rho kinase (ROCK), an important downstream effector of RhoA subfamily GTPases. These inhibitors have been successful in many preclinical studies, indicating the potential benefit of clinical Rho pathway inhibition. On the other hand, except for Rac1 inhibitor NSC23766, there are few effective inhibitors directly targeting Rho GTPases, likely due to the lack of optimal structural information on individual Rho-RhoGEF, Rho-RhoGAP, or Rho-RhoGDI interaction to achieve specificity. Recently, LM11A-31 and other derivatives of peptide mimetic ligands for p75 neurotrophin receptor (p75(NTR)) show promising effects upstream of Rho GTPase signaling in neuronal regeneration. CCG-1423, a chemical compound showing profiles of inhibiting downstream of RhoA, is a further attempt for the development of novel pharmacological tools to disrupt Rho signaling pathway in cancer. Because of a rapidly growing number of studies deciphering the role of the Rho proteins in many diseases, specific and potent pharmaceutical modulators of various steps of Rho GTPase signaling pathway are critically needed to target for therapeutic intervention in cardiovascular disease, neurological disorders, and cancer progression.
    Current Medicinal Chemistry 02/2009; 16(11):1355-65. · 3.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite of the medicinal significance of benzoxaboroles, with the newly discovered clinical compound AN2690 as an example, the synthetic method for rapid diversification of this novel scaffold is lacking. To this end, a versatile and scalable synthesis of formyl-substituted benzoxaboroles is described here. A key step is the mono-oxidation of the two hydroxyls in compound 4 by taking advantage of the stable oxaborole ring in non-coordinating solvents, which was devised based on the study of the intramolecular coordination and exchange properties.
    Tetrahedron. 01/2009; 65(42):8738-8744.
  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 01/2009; 40(36).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene fscTE, encoding a putative type II thioesterase (TEII), was associated with the FR-008/candicidin gene cluster. Deletion of fscTE reduced approximately 90% of the FR-008/candicidin production, while the production level was well restored when fscTE was added back to the mutant in trans. FscTE was unable to compensate for the release of the maturely elongated polyketide as site-directed inactivation of the type I thioesterase (TEI) totally abolished FR-008/candicidin production. Direct biochemical analysis of FscTE in parallel with its homologue TylO from the tylosin biosynthetic pathway demonstrated their remarkable preferences for acyl-thioesters (i.e., propionyl-S-N-acetylcysteamine [SNAC] over methylmalonyl-SNAC and acetyl-SNAC over malonyl-SNAC) and thus concluded that TEII could maintain effective polyketide biosynthesis by selectively removing the nonelongatable residues bound to acyl carrier proteins. Overexpression of FscTE under the strong constitutive ermE*p promoter in the wild-type strain did not suppress FR-008/candicidin formation, which confirmed its substrate specificity in vivo. Furthermore, successful complementation of the fscTE mutant was obtained with fscTE and tylO, whereas no complementation was detected with nonribosomal peptide synthetase (NRPS) TEII tycF and srfAD, reflecting substrate specificities of TEIIs distinctive from those of either polyketide synthases or NRPSs.
    Applied and Environmental Microbiology 11/2008; 74(23):7235-42. · 3.95 Impact Factor

Publication Stats

301 Citations
96.77 Total Impact Points

Institutions

  • 2010–2014
    • Shanghai Jiao Tong University
      • • State Key Laboratory of Microbial Metabolism
      • • School of Pharmacy
      Shanghai, Shanghai Shi, China
  • 2006–2009
    • Anacor Pharmaceuticals
      Palo Alto, California, United States