Vanessa Bastos Pereira

Federal University of Minas Gerais, Cidade de Minas, Minas Gerais, Brazil

Are you Vanessa Bastos Pereira?

Claim your profile

Publications (4)11.25 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory bowel diseases (IBD) are intestinal disorders characterized by inflammation in the gastrointestinal tract. Interleukin-10 is one of the most important anti-inflammatory cytokines involved in the intestinal immune system and because of its role in downregulating inflammatory cascades, its potential for IBD therapy is under study. We previously presented the development of an invasive strain of Lactococcus lactis (L. lactis) producing Fibronectin Binding Protein A (FnBPA) which was capable of delivering, directly to host cells, a eukaryotic DNA expression vector coding for IL-10 of Mus musculus (pValac:il-10) and diminish inflammation in a trinitrobenzene sulfonic acid (TNBS)-induced mouse model of intestinal inflammation. As a new therapeutic strategy against IBD, the aim of this work was to evaluate the therapeutic effect of two L. lactis strains (the same invasive strain evaluated previously and the wild-type strain) carrying the therapeutic pValac:il-10 plasmid in the prevention of inflammation in a dextran sodium sulphate (DSS)-induced mouse model.
    BMC Biotechnology 08/2014; 14(1):73. · 2.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many probiotic bacteria have been described as promising tools for the treatment and prevention of inflammatory bowel diseases (IBDs). Most of these bacteria are lactic acid bacteria, which are part of the healthy human microbiota. However, little is known about the effects of transient bacteria present in normal diets, including Lactococcus lactis.
    Gut Pathogens 01/2014; 6:33. · 2.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Current immunological bioinformatic approaches focus on the prediction of allele-specific epitopes capable of triggering immunogenic activity. The prediction of major histocompatibility complex (MHC) class I epitopes is well studied, and various software solutions exist for this purpose. However, currently available tools do not account for the concentration of epitope products in the mature protein product and its relation to the reliability of target selection. Results We developed a computational strategy based on measuring the epitope's concentration in the mature protein, called Mature Epitope Density (MED). Our method, though simple, is capable of identifying promising vaccine targets. Our online software implementation provides a computationally light and reliable analysis of bacterial exoproteins and their potential for vaccines or diagnosis projects against pathogenic organisms. We evaluated our computational approach by using the Mycobacterium tuberculosis (Mtb) H37Rv exoproteome as a gold standard model. A literature search was carried out on 60 out of 553 Mtb's predicted exoproteins, looking for previous experimental evidence concerning their possible antigenicity. Half of the 60 proteins were classified as highest scored by the MED statistic, while the other half were classified as lowest scored. Among the lowest scored proteins, ~13% were confirmed as not related to antigenicity or not contributing to the bacterial pathogenicity, and 70% of the highest scored proteins were confirmed as related. There was no experimental evidence of antigenic or pathogenic contributions for three of the highest MED-scored Mtb proteins. Hence, these three proteins could represent novel putative vaccine and drug targets for Mtb. A web version of MED is publicly available online at http://med.mmci.uni-saarland.de/ webcite. Conclusions The software presented here offers a practical and accurate method to identify potential vaccine and diagnosis candidates against pathogenic bacteria by "reading" results from well-established reverse vaccinology software in a novel way, considering the epitope's concentration in the mature portion of the protein.
    BMC Genomics 01/2013; 14(Suppl 6):S4. · 4.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-10 (IL-10) is the most important anti-inflammatory cytokine at intestinal level, and its absence is involved in inflammatory bowel diseases. However, oral treatment with IL-10 is difficult because of its low survival in the gastrointestinal tract and systemic treatments lead to undesirable side effects. The aim of this paper was to evaluate the anti-inflammatory effect of the administration of milks fermented by Lactococcus lactis strains that produce IL-10 under the control of the xylose-inducible expression system using a trinitrobenzenesulfonic acid-induced colitis murine model. Mice that received milks fermented by L. lactis strains producing IL-10 in the cytoplasm (Cyt strain) or secreted to the product (Sec strain) showed lower damage scores in their large intestines, decreased IFN-γ levels in their intestinal fluids and lower microbial translocation to liver, compared to mice receiving milk fermented by the wild-type strain or those not receiving any treatment. The results obtained in this study show that the employment of fermented milks as a new form of administration of IL-10-producing L. lactisis effective in the prevention of inflammatory bowel disease in a murine model.
    Journal of Molecular Microbiology and Biotechnology 01/2011; 21(3-4):138-46. · 1.95 Impact Factor