Kostas Bourtzis

University of Western Greece, Agrínio, West Greece, Greece

Are you Kostas Bourtzis?

Claim your profile

Publications (91)319.84 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.
    Science 04/2014; 344(6182):380-386. · 31.20 Impact Factor
  • Source
    Science. 04/2014; 344:385.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tsetse flies (Glossina spp.) are the cyclical vectors of Trypanosoma spp., which are unicellular parasites responsible for multiple diseases, including nagana in livestock and sleeping sickness in humans in Africa. Glossina species, including Glossina morsitans morsitans (Gmm), for which the Whole Genome Sequence (WGS) is now available, have established symbiotic associations with three endosymbionts: Wigglesworthia glossinidia, Sodalis glossinidius and Wolbachia pipientis (Wolbachia). The presence of Wolbachia in both natural and laboratory populations of Glossina species, including the presence of horizontal gene transfer (HGT) events in a laboratory colony of Gmm, has already been shown. We herein report on the draft genome sequence of the cytoplasmic Wolbachia endosymbiont (cytWol) associated with Gmm. By in silico and molecular and cytogenetic analysis, we discovered and validated the presence of multiple insertions of Wolbachia (chrWol) in the host Gmm genome. We identified at least two large insertions of chrWol, 527,507 and 484,123 bp in size, from Gmm WGS data. Southern hybridizations confirmed the presence of Wolbachia insertions in Gmm genome, and FISH revealed multiple insertions located on the two sex chromosomes (X and Y), as well as on the supernumerary B-chromosomes. We compare the chrWol insertions to the cytWol draft genome in an attempt to clarify the evolutionary history of the HGT events. We discuss our findings in light of the evolution of Wolbachia infections in the tsetse fly and their potential impacts on the control of tsetse populations and trypanosomiasis.
    PLoS Neglected Tropical Diseases 04/2014; 8(4):e2728. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rhagoletis cerasi (Diptera: Tephritidae) is a major pest of sweet and sour cherries in Europe and parts of Asia. Despite its economic significance, there is a lack of studies on the genetic structure of R. cerasi populations. Elucidating the genetic structure of insects of economic importance is crucial for developing phenological-predictive models and environmental friendly control methods. All natural populations of R. cerasi have been found to harbor the endosymbiont Wolbachia pipientis, which widely affects multiple biological traits contributing to the evolution of its hosts, and has been suggested as a tool for the biological control of insect pests and disease vectors. In the current study, the analysis of 18 R. cerasi populations collected in Greece, Germany, and Russia using 13 microsatellite markers revealed structuring of R. cerasi natural populations, even at close geographic range. We also analyzed the Wolbachia infection status of these populations using 16S rRNA-, MLST- and wsp-based approaches. All 244 individuals screened were positive for Wolbachia. Our results suggest the fixation of the wCer1 strain in Greece while wCer2, wCer4, wCer5, and probably other uncharacterized strains were also detected in multiply infected individuals. The role of Wolbachia and its potential extended phenotypes needs a thorough investigation in R. cerasi. Our data suggest an involvement of this symbiont in the observed restriction in the gene flow in addition to a number of different ecological factors.
    Ecology and Evolution 04/2014; · 1.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Trialeurodes vaporariorum, the greenhouse whitefly, is a cosmopolitan agricultural pest. Little is known about the genetic diversity of T. vaporariorum and the bacterial symbionts associated with this species. Here, we undertook a large phylogeographic study by investigating both the mitochondrial diversity and the infection status of 38 T. vaporariorum collections from 18 countries around the world. Genetic diversity of T. vaporariorum was studied by analyzing sequence data from the mitochondrial cytochrome oxidase I (COI), cytochrome b (cytb) and NADH dehydrogenase subunit 5 (ND5) genes. Maximum-likelihood phylogeny reconstruction delineated two clades characterized by limited sequence divergence: one clade comprised samples only from the Northern hemisphere whereas the other comprised samples from a broader geographical range. The presence of secondary symbionts was determined by PCR using primers specific for Hamiltonella, Rickettsia, Arsenophonus, Cardinium, Wolbachia and Fritschea. Most individuals examined harbored at least one secondary endosymbiont, and Arsenophonus was detected in almost all male and female individuals. Wolbachia was present at a much lower frequency, and Cardinium was detected in only a few individuals from Greece. Rickettsia, Hamiltonella and Fritschea were not found. Additionally, we set out to further analyze Arsenophonus diversity by Multilocus Sequence Typing (MLST) analysis, however, the Arsenophonus sequences did not exhibit any polymorphism. Our results revealed remarkably low diversity in both mitochondrial DNA and symbionts in this world-wide agricultural pest, contrasting sharply with that of the ecologically similar Bemisia tabaci.
    01/2014;
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mosquito species, members of the genera Aedes, Anopheles and Culex, are the major vectors of human pathogens including protozoa (Plasmodium spp.), filariae and of a variety of viruses (causing dengue, chikungunya, yellow fever, West Nile). There is lack of efficient methods and tools to treat many of the diseases caused by these major human pathogens, since no efficient vaccines or drugs are available; even in malaria where insecticide use and drug therapies have reduced incidence, 219 million cases still occurred in 2010. Therefore efforts are currently focused on the control of vector populations. Insecticides alone are insufficient to control mosquito populations since reduced susceptibility and even resistance is being observed more and more frequently. There is also increased concern about the toxic effects of insecticides on non-target (even beneficial) insect populations, on humans and the environment. During recent years, the role of symbionts in the biology, ecology and evolution of insect species has been well-documented and has led to suggestions that they could potentially be used as tools to control pests and therefore diseases. Wolbachia is perhaps the most renowned insect symbiont, mainly due to its ability to manipulate insect reproduction and to interfere with major human pathogens thus providing new avenues for pest control. We herein present recent achievements in the field of mosquito-Wolbachia symbiosis with an emphasis on Aedes albopictus. We also discuss how Wolbachia symbiosis can be harnessed for vector control as well as the potential to combine the sterile insect technique and Wolbachia-based approaches for the enhancement of population suppression programs.
    Acta tropica 11/2013; · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tsetse flies (Diptera: Glossinidae) harbour three known vertically transmitted bacterial symbionts (Wigglesworthia, Sodalis, and/or Wolbachia) that modulate the reproduction and immune competence of the flies. Wigglesworthia and Sodalis are both intra- and extra-cellular, while Wolbachia is strictly intracellular. Wigglesworthia resides in the midgut bacteriocytes or in the milk glands and does not infect reproductive tissues. Sodalis resides in the reproductive tract and infects the mid-guts, hemolymph and milk glands, while Wolbachia exclusively infects germ tissues. Some tsetse species such as G. pallidipes also harbour Glossina pallidipes salivary gland hypertrophy virus (GpSGHV), whose infection phenotypes can be either asymptomatic or symptomatic. In mosquitoes, aphids and tsetse the removal of the symbionts by antibiotics impacts host fitness and increases host susceptibility to pathogen infections. We therefore hypothesized that suppression of the G. pallidipes symbionts would alter GpSGHV titres and/or expression of salivary gland hypertrophy (SGH) in parent and their progenies. Injected virus replicated in the parents, but was not secreted via saliva during fly feeding. Whereas GpSGHV-injected parents did not exhibit SGH, the incidence of SGH symptoms increased from 4.5% to > 95% from the first to the fourth larviposition cycles of the F1 progenies. Ampicillin had negligible impacts on the virus titres in adult parents. However, the antibiotic reduced titres of GpSGHV, Sodalis and Wigglesworthia, and negated expression of SGH symptoms in the F1 progenies. Wolbachia was not detected in any of the analysed samples. The results indicated that the fat body tracheal system may provide a conduit for the trans-generational GpSGHV transmission via milk gland secretions, and that the removal of the microbiome suppresses this transmission. These data suggest that the G. pallidipes microbiome may have co-evolved with GpSGHV, and plays key roles in the mother-to-progeny transmission of the virus.
    EFS-EMBO Symposium; Integrated insect immunology: From basic biology to environmental applications, Polonia Castle in Pultusk, Poland; 09/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Etoliko, an anoxic semi-enclosed basin, is part of a complex wetland in Western Greece extremely rich in biodiversity. It covers an area of 1,700 ha with an atypical orientation that has been formed tectonically. In order to identify the main factors influencing the bacterial profile at the Etoliko basin, 48 samples were collected, representing seasonal variation at four sampling stations. Physico-chemical analysis of the samples indicates the presence of three layers in the Etoliko basin: (1) low-density surface layer, (2) a layer with a steep density gradient, and (3) dense water below a depth of 20 m. A permanent halocline, whose thickness is varying seasonally, has been identified in the Etoliko basin water column, while the spatiotemporal salinity distribution was highly affected by the basin’s interaction with the nearby Messolonghi lagoon. The anoxic zone extends from 20 m below the surface to the bottom of the Etoliko basin in summer, while the bottom layer was hypoxic during winter. Bacterial populations were analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA). Bacterial richness and diversity were calculated and compared across samples. Hierarchical analysis showed that ARISA clustered the surface water samples according to seasonal variation, while sediment and near-to-bottom water samples appear to be stable and to cluster together. Non-metric multidimensional scaling (MDS) indicates that bacterial composition depends on dissolved oxygen and salinity. Increase in salinity of the ecosystem leads to a significant reduction of the microbial diversity.
    Annals of Microbiology 09/2013; · 1.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When considering a mosquito release programme, one of the first issues to be addressed is how to eliminate/separate the females. The greatest number of options might eventually be available for those who can use transgenic mosquitoes, but the inherent characteristics of the target species may also provide possibilities for interim measures until more efficient methods can be developed. Differences in intrinsic size, in behaviour and in development rate between females and males are often available and useful for sexing. Efficient species-specific systems for eliminating females at the embryo stage have been developed, but most have since been discarded due to lack of use. Ideal systems specifically kill female embryos using some treatment that can be manipulated during production. Such killing systems are far more efficient than using intrinsic sexual differences, but they systems require selectable genetic markers and sex-linkage created by rare random chromosomal rearrangements. While intrinsic sexual differences should not be considered as long-term candidates for the development of robust and efficient sexing approaches, in the absence of these, the accessibility and integration of less efficient systems can provide a stop-gap measure that allows rapid start up with a minimum of investment. The International Atomic Energy Agency is funding over a 5 year period (2013-2018) a new Coordinated Research Project on "Exploring Genetic, Molecular, Mechanical and Behavioural Methods of Sex Separation in Mosquitoes" to network researchers and to address the critical need of genetic sexing strains for the implementation of the sterile insect technique (using radiation-sterilised or transgenic male mosquitoes) and for insect incompatibility technique programmes against disease-transmitting mosquitoes.
    Acta tropica 08/2013; · 2.79 Impact Factor
  • Source
    Spyridon Ntougias, Kostas Bourtzis, George Tsiamis
    [Show abstract] [Hide abstract]
    ABSTRACT: Olive mill wastes (OMWs) are high-strength organic effluents, which upon disposal can degrade soil and water quality, negatively affecting aquatic and terrestrial ecosystems. The main purpose of this review paper is to provide an up-to-date knowledge concerning the microbial communities identified over the past 20 years in olive mill wastes using both culture-dependent and independent approaches. A database survey of 16S rRNA gene sequences (585 records in total) obtained from olive mill waste environments revealed the dominance of members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria. Independent studies confirmed that OMW microbial communities' structure is cultivar dependant. On the other hand, the detection of fecal bacteria and other potential human pathogens in OMWs is of major concern and deserves further examination. Despite the fact that the degradation and detoxification of the olive mill wastes have been mostly investigated through the application of known bacterial and fungal species originated from other environmental sources, the biotechnological potential of indigenous microbiota should be further exploited in respect to olive mill waste bioremediation and inactivation of plant and human pathogens. The implementation of omic and metagenomic approaches will further elucidate disposal issues of olive mill wastes.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The vertically transmitted endosymbionts (Sodalis glossinidius and Wigglesworthia glossinidia) of the tsetse fly (Diptera: Glossinidae) are known to supplement dietary deficiencies and modulate the reproductive fitness and the defense system of the fly. Some tsetse fly species are also infected with the bacterium, Wolbachia and with the Glossina hytrosavirus (GpSGHV). Laboratory-bred G. pallidipes exhibit chronic asymptomatic and acute symptomatic GpSGHV infection, with the former being the most common in these colonies. However, under as yet undefined conditions, the asymptomatic state can convert to the symptomatic state, leading to detectable salivary gland hypertrophy (SGH +) syndrome. In this study, we investigated the interplay between the bacterial symbiome and GpSGHV during development of G. pallidipes by knocking down the symbionts with antibiotic. Intrahaemocoelic injection of GpSGHV led to high virus titre (10 9 virus copies), but was not accompanied by either the onset of detectable SGH + , or release of detectable virus particles into the blood meals during feeding events. When the F 1 generations of GpSGHV-challenged mothers were dissected within 24 h post-eclosion, SGH + was observed to increase from 4.5% in the first larviposition cycle to .95% in the fourth cycle. Despite being sterile, these F 1 SGH + progeny mated readily. Removal of the tsetse symbiome, however, suppressed transgenerational transfer of the virus via milk secretions and blocked the ability of GpSGHV to infect salivary glands of the F 1 progeny. Whereas GpSGHV infects and replicates in salivary glands of developing pupa, the virus is unable to induce SGH + within fully differentiated adult salivary glands. The F 1 SGH + adults are responsible for the GpSGHV-induced colony collapse in tsetse factories. Our data suggest that GpSGHV has co-evolved with the tsetse symbiome and that the symbionts play key roles in the virus transmission from mother to progeny.
    PLoS ONE 04/2013; 8(4):e61150. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The importance of host-specialization to speciation processes in obligate host-associated bacteria is well known, as is also the ability of recombination to generate cohesion in bacterial populations. However, whether divergent strains of highly recombining intracellular bacteria, such as Wolbachia, can maintain their genetic distinctness when infecting the same host is not known. We first developed a protocol for the genome sequencing of uncultivable endosymbionts. Using this method, we have sequenced the complete genomes of the Wolbachia strains wHa and wNo, which occur as natural double infections in Drosophila simulans populations on the Seychelles and in New Caledonia. Taxonomically, wHa belong to supergroup A and wNo to supergroup B. A comparative genomics study including additional strains supported the supergroup classification scheme and revealed 24 and 33 group-specific genes, putatively involved in host-adaptation processes. Recombination frequencies were high for strains of the same supergroup despite different host-preference patterns, leading to genomic cohesion. The inferred recombination fragments for strains of different supergroups were of short sizes, and the genomes of the co-infecting Wolbachia strains wHa and wNo were not more similar to each other and did not share more genes than other A- and B-group strains that infect different hosts. We conclude that Wolbachia strains of supergroup A and B represent genetically distinct clades, and that strains of different supergroups can co-exist in the same arthropod host without converging into the same species. This suggests that the supergroups are irreversibly separated and that barriers other than host-specialization are able to maintain distinct clades in recombining endosymbiont populations. Acquiring a good knowledge of the barriers to genetic exchange in Wolbachia will advance our understanding of how endosymbiont communities are constructed from vertically and horizontally transmitted genes.
    PLoS Genetics 04/2013; 9(4):e1003381. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A study on the phylogenetic relationships of aphids (Hemiptera: Aphididae) from different regions of Greece, has been carried out using fragments of cytochrome c oxidase I (COI) and 12S rRNA genes. Species belonging in Aphidinae, Chaitophorinae, Lachninae, Calaphidinae and Eriosomatinae subfamilies were included in our survey, although the majority is classified within the Aphidini and Macrosiphini tribes. Based on our data, estimated genetic divergence ranged from 1.3% to 15.5% with Cinara tujafilina (Lachninae) being the most distant species. Neighbour-Joining (NJ), maximum parsimony (MP) and Bayesian inference analysis (BI) phylogenetic trees showed a similar topology, which was compatible with the currently accepted systematic classification of aphids at the subfamily and tribe-subtribe level. Positioning of C. tujafilina as basal group in the dendrogram indicates the early separation of Lachninae from the other aphid species studied. Moreover a sistership relationship between the Aphidina and Rhopalosiphina subtribes was also observed in the dendrogram, although the monophyly of the genus Rhopalosiphum has not been resolved. Aphis nerii and Toxoptera aurantii, positioned at the basal node of the Aphidini-Aphidina cluster, apart from the rest of the Aphis species, while within this genus some groupings include species with similar morphological characteristics. Finally, the Macrosiphini group was also monophyletic; however within this group, there were several polytomies which might reflect cryptic or convergent morphological differences. Our results corroborate the findings of previous studies based on molecular data; however, there are still unresolved issues which need further clarification in order to fully understand this family’s complex phylogeny.
    Journal of Biological Research 01/2013; 20. · 0.62 Impact Factor
  • Source
    Spyridon Ntougias, Kostas Bourtzis, George Tsiamis
    [Show abstract] [Hide abstract]
    ABSTRACT: Olive mill wastes (OMWs) are high-strength organic effluents, which upon disposal can degrade soil and water quality, negatively affecting aquatic and terrestrial ecosystems. The main purpose of this review paper is to provide an up-to-date knowledge concerning the microbial communities identified over the past 20 years in olive mill wastes using both culture-dependent and independent approaches. A database survey of 16S rRNA gene sequences (585 records in total) obtained from olive mill waste environments revealed the dominance of members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria. Independent studies confirmed that OMW microbial communities' structure is cultivar dependant. On the other hand, the detection of fecal bacteria and other potential human pathogens in OMWs is of major concern and deserves further examination. Despite the fact that the degradation and detoxification of the olive mill wastes have been mostly investigated through the application of known bacterial and fungal species originated from other environmental sources, the biotechnological potential of indigenous microbiota should be further exploited in respect to olive mill waste bioremediation and inactivation of plant and human pathogens. The implementation of omic and metagenomic approaches will further elucidate disposal issues of olive mill wastes.
    BioMed research international. 01/2013; 2013:784591.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ankyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions. We present a comparative evolutionary analysis of the wMel-related ankyrin repeat domain-encoding genes present in different Drosophila-Wolbachia associations. Our results show that the ankyrin repeat domain-encoding genes change in size by expansion and contraction mediated by short directly repeated sequences. We provide examples of intra-genic recombination events and show that these genes are likely to be horizontally transferred between strains with the aid of bacteriophages. These results confirm previous findings that the Wolbachia genomes are evolutionary mosaics and illustrate the potential that these bacteria have to generate diversity in proteins potentially involved in the symbiotic interactions.
    PLoS ONE 01/2013; 8(2):e55390. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The kinetics of hexavalent chromium bio-reduction in draw-fill suspended and attached growth reactors was examined using sugar as substrate and indigenous microorganisms from the industrial sludge of the Hellenic Aerospace Industry. Initially, experiments in suspended growth batch reactors for Cr (VI) concentrations of 1.4-110 mg/l were carried out, to extensively study the behaviour of a mixed culture. The maximum Cr(VI) reduction rate of 2 mg/l h was achieved for initial concentration 12.85 mg/l with biomass production rate 4.1 mg biomass/l h. Analysis of the microbial structure in the batch reactor culture indicated that the dominant bacterial communities were constituted by bacterial members of Raoultella sp., Citrobacter sp., Klebsiella sp., Salmonella sp., Achromobacter sp. and Kerstersia sp. while the dominant fungal strain was that of Pichia jadinii. Experiments using the same mixed culture were also carried out in packed-bed reactors with plastic support media. High removal rates were achieved (2.0 mg/l h) even in high initial concentrations (109 mg/l). A combination of the model of Tsao and Hanson for growth enhancement and that of Aiba and Shoda for growth inhibition was used in order to describe and predict the process of Cr(VI) bio-reduction in suspended growth and packed-bed reactors. Kinetic constants of the equation obtained from both batch (or draw-fill) culture experiments. In the draw-fill experiments at the packed-bed reactor, hexavalent chromium inhibitory effects were minimized increasing the inhibitory constant value K(i)(') at 148.5 mg/l, compared to suspended growth experiments which was K(i) = 8.219 mg/l. The model adequately predicts hexavalent chromium reduction in both batch reactors for all initial concentrations tested.
    Water Research 11/2012; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wolbachia manipulate insect host biology through a variety of means that result in increased production of infected females, enhancing its own transmission. A Wolbachia strain (wInn) naturally infecting Drosophila innubila induces male killing, while native strains of D. melanogaster and D. simulans usually induce cytoplasmic incompatibility (CI). In this study, we transferred wInn to D. melanogaster and D. simulans by embryonic microinjection, expecting conservation of the male-killing phenotype to the novel hosts, which are more suitable for genetic analysis. In contrast to our expectations, there was no effect on offspring sex ratio. Furthermore, no CI was observed in the transinfected flies. Overall, transinfected D. melanogaster lines displayed lower transmission rate and lower densities of Wolbachia than transinfected D. simulans lines, in which established infections were transmitted with near-perfect fidelity. In D. simulans, strain wInn had no effect on fecundity and egg-to-adult development. Surprisingly, one of the two transinfected lines tested showed increased longevity. We discuss our results in the context of host-symbiont co-evolution and the potential of symbionts to invade novel host species.
    Heredity 08/2012; 109(5):306-12. · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To date, IAEA-supported Sterile Insect Technique (SIT) projects for tsetse and trypanosomiasis control have been in areas without human sleeping sickness, but future projects could include areas of actual or potential human disease transmission. In this context it would be imperative that released sterile tsetse flies are incompetent to transmit the disease-causing trypanosome parasite. Therefore, development of tsetse fly strains refractory to trypanosome infection is highly desirable as a simple and effective method of ensuring vector incompetence of the released flies. This new IAEA Coordinated Research Project (CRP) focuses on gaining a deeper knowledge of the tripartite interactions between the tsetse fly vectors, their symbionts and trypanosome parasites. The objective of this CRP is to acquire a better understanding of mechanisms that limit the development of trypanosome infections in tsetse and how these may be enhanced.
    Journal of Invertebrate Pathology 07/2012; · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the trypanosomes, which cause human African trypanosomosis (HAT) or sleeping sickness in humans and African animal trypanosomosis (AAT) or nagana in animals. Due to the lack of effective vaccines and inexpensive drugs for HAT, and the development of resistance of the trypanosomes against the available trypanocidal drugs, vector control remains the most efficient strategy for sustainable management of these diseases. Among the control methods used for tsetse flies, Sterile Insect Technique (SIT), in the frame of area-wide integrated pest management (AW-IPM), represents an effective tactic to suppress and/or eradicate tsetse flies. One constraint in implementing SIT is the mass production of target species. Tsetse flies harbor obligate bacterial symbionts and salivary gland hypertrophy virus which modulate the fecundity of the infected flies. In support of the future expansion of the SIT for tsetse fly control, the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture implemented a five year Coordinated Research Project (CRP) entitled "Improving SIT for Tsetse Flies through Research on their Symbionts and Pathogens". The consortium focused on the prevalence and the interaction between the bacterial symbionts and the virus, the development of strategies to manage virus infections in tsetse colonies, the use of entomopathogenic fungi to control tsetse flies in combination with SIT, and the development of symbiont-based strategies to control tsetse flies and trypanosomosis. The results of the CRP and the solutions envisaged to alleviate the constraints of the mass rearing of tsetse flies for SIT are presented in this special issue.
    Journal of Invertebrate Pathology 07/2012; · 2.67 Impact Factor

Publication Stats

2k Citations
319.84 Total Impact Points

Institutions

  • 2012–2014
    • University of Western Greece
      Agrínio, West Greece, Greece
    • N.AG.RE.F. - NATIONAL AGRICULTURAL RESEARCH FOUNDATION
      Megalokastro, Crete, Greece
  • 2013
    • International Atomic Energy Agency (IAEA)
      Wien, Vienna, Austria
    • University of Patras
      • Department of Environmental and Natural Resources Management
      Rhion, West Greece, Greece
  • 2011–2012
    • Biomedical Sciences Research Center Alexander Fleming
      Βάρη, Attica, Greece
  • 2004–2012
    • University of Crete
      • School of Medicine
      Retimo, Crete, Greece
  • 1970–2012
    • University of Ioannina
      • Department of Environmental and Natural Resources Management
      Ioánnina, Ipeiros, Greece
  • 2010
    • Bielefeld University
      Bielefeld, North Rhine-Westphalia, Germany
    • Università degli Studi di Modena e Reggio Emilia
      Modène, Emilia-Romagna, Italy
  • 2009
    • Aristotle University of Thessaloniki
      • Department of Genetics, Development and Molecular Biology
      Thessaloníki, Kentriki Makedonia, Greece
    • Technological Educational Institute of Crete
      Megalokastro, Crete, Greece
  • 2004–2009
    • University of Pavia
      • Department of Biology and Biotechnology "Lazzaro Spallanzani"
      Ticinum, Lombardy, Italy
  • 2008
    • American Economic Association
      United States
  • 1999–2001
    • Yale-New Haven Hospital
      New Haven, Connecticut, United States
  • 1994
    • Institute of Genetics and Molecular Medicine
      Edinburgh, Scotland, United Kingdom