R Oughideni

French National Centre for Scientific Research, Lutetia Parisorum, Île-de-France, France

Are you R Oughideni?

Claim your profile

Publications (16)41.43 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Because encapsulation of antiviral drugs in liposomes resulted generally in improved activity against retroviral replication in vivo, the antiviral effects of free-SPC3 and liposome-associated SPC3 were compared in cultured human lymphocytes infected with HIV-1. SPC3 was entrapped in various liposomal formulations, either different in size (mean diameter of 100 and 250 nm), SPC3 concentration or cholesterol content. Liposome-associated SPC3 were tested for both inhibition of cell-cell fusion and infection with HIV-1 clones. SPC3 inhibited HIV-1-induced fusion at a micromolar concentration range. When associated with liposomes, SPC3 was found to be about 10-fold more potent than free SPC3 in inhibiting syncytium formation. Continuous treatment with free SPC3 also inhibited virus production in a dose-dependent manner, with inhibition of HIV infection of C8166 T-cells or human peripheral blood lymphocytes (PBLs) at micromolar concentrations. Liposomal entrapment was found to increase the antiviral efficacy of SPC3 by more than 10- and 5-fold in C8166 and PBLs, respectively. These data suggest that the liposome approach may be used to improve SPC3 antiviral efficacy.
    Antiviral Research 07/2002; 54(3):175-88. · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maurotoxin (MTX) is a 34-residue toxin that has been isolated from the venom of the chactidae scorpion Scorpio maurus palmatus, and characterized. Together with Pi1 and HsTx1, MTX belongs to a family of short-chain four-disulfide-bridged scorpion toxins acting on potassium channels. However, contrary to other members of this family, MTX exhibits an uncommon disulfide bridge organization of the type C1-C5, C2-C6, C3-C4 and C7-C8, versus C1-C5, C2-C6, C3-C7 and C4-C8 for both Pi1 and HsTx1. Here, we report that the substitution of MTX proline residues located at positions 12 and/or 20, adjacent to C3 (Cys(13)) and C4 (Cys(19)), results in conventional Pi1- and HsTx1-like arrangement of the half-cystine pairings. In this case, this novel disulfide bridge arrangement is without obvious incidence on the overall three-dimensional structure of the toxin. Pharmacological assays of this structural analog, [A(12),A(20)]MTX, reveal that the blocking activities on Shaker B and rat Kv1.2 channels remain potent whereas the peptide becomes inactive on rat Kv1.3. These data indicate, for the first time, that discrete point mutations in MTX can result in a marked reorganization of the half-cystine pairings, accompanied with a novel pharmacological profile for the analog.
    FEBS Letters 03/2001; 489(2-3):202-7. · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new ligand of the K+ channels sensitive to KTX was purified from the venom of Buthus occitanus tunetanus, using two steps of high-performance-liquid-chromatography and by following its ability to compete with [125I]-KTX for binding to the KTX receptor on rat brain synaptosomes. Amino-acid analysis, amino acid sequencing and mass spectroscopy defined this new ligand. KTX3, as a 37-amino acid peptide, with three disulfide bridges. Its sequence shares 76% identity with KTX. The main differences between the two peptides are in the N-terminal region and the residue position 34 located in the region involved in channel recognition. These differences may explain the 5-fold lower binding affinity of KTX3, IC50=50 pM, than KTX to rat brain synaptosomes. Specific antibodies raised against KTX (1-37) were not able to recognize KTX3.
    Toxicon 02/2000; 38(1):105-11. · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colicins are killer proteins that use envelope proteins from the outer and the inner membranes to reach their cellular target in susceptible cells of Escherichia coli. Each group A colicin uses a combination of Tol proteins to cross the outer membrane of gram-negative bacteria and to exert their killing activity. The TolA protein, necessary for the import of all the group A colicins, is a 421-amino acid residue protein composed of three domains (TolAI, TolAII, and TolAIII). TolAIII interacts with the N-terminal domain of colicin A (AT1). Analytical ultracentrifugation reveals that TolAII and TolAIII are monomer structures, TolAII has an elongated structure, and TolAIII is rather globular. Circular dichroism (CD) spectra were done with TolAII-III, TolAII, TolAIII, AT1, and the AT1–TolAII-III complex. TolA CD spectra reveal the presence of -helix structure in aqueous solution and the intensity of the -helix signal is the highest with TolAII. Few structural changes are observed with the complex AT1–TolAII-III. Molecular modeling was done for TolAII-III, taking into account CD and ultracentrifugation data and show that domain II can adopt a barrel structure made of three twisted -helices similar to coiled coil helices while domain III can adopt a globular structure. © 1999 John Wiley & Sons, Inc. Biospectroscopy 5: 189–198, 1999
    Biospectroscopy 06/1999; 5(3):189 - 198.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colicins are killer proteins that use envelope proteins from the outer and the inner membranes to reach their cellular target in susceptible cells of Escherichia coli. Each group A colicin uses a combination of Tol proteins to cross the outer membrane of gram-negative bacteria and to exert their killing activity. The TolA protein, necessary for the import of all the group A colicins, is a 421-amino acid residue protein composed of three domains (TolAI, TolAII, and TolAIII). TolAIII interacts with the N-terminal domain of colicin A (AT1). Analytical ultracentrifugation reveals that TolAII and TolAIII are monomer structures, TolAII has an elongated structure, and TolAIII is rather globular. Circular dichroism (CD) spectra were done with TolAII-III, TolAII, TolAIII, AT1, and the AT1-TolAII-III complex. TolA CD spectra reveal the presence of alpha-helix structure in aqueous solution and the intensity of the a-helix signal is the highest with TolAII. Few structural changes are observed with the complex AT1-TolAII-III. Molecular modeling was done for TolAII-III, taking into account CD and ultracentrifugation data and show that domain II can adopt a barrel structure made of three twisted alpha-helices similar to coiled coil helices while domain III can adopt a globular structure.
    Biospectroscopy 02/1999; 5(3):189-98.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maurotoxin, a toxin from the venom of the Tunisian chactoid scorpion Scorpio maurus, has been purified to homogeneity by gel filtration/reversed-phase HPLC, and characterized. It is a basic and C-terminal amidated 34-residue polypeptide cross-linked by four disulfide bridges. From Edman sequencing results, only six different pairings between the first six half-cystines were retained whereas a disulfide bridge was predicted between the two half-cystines in positions 31 and 34. Modelling based on the structure of charybdotoxin favored two different pairings, one of which possessed two disulfides in common with the general motif of scorpion toxins. The solid-phase technique was used to obtain synthetic maurotoxin, sMTX. The half-cystine pairings of sMTX were determined by enzymatic cleavage and were found to be Cys3 Cys24, Cys9-Cys29, Cys13-Cys19, and Cys31-34, in agreement with experimental data obtained with natural maurotoxin. Both natural and synthetic maurotoxins were lethal to mice following intracerebroventricular injection (LD50, 80 ng/mouse). They blocked the Kv1.1, Kv1.2, and Kv1.3 channels expressed in Xenopus oocytes with almost identical half-effects (IC50) in the range of 40, 0.8 and 150 nM, respectively. They also competed with 125I-apamin (SKca channel blocker) and 125I-kaliotoxin (Kv channel blocker) for binding to rat brain synaptosomes with IC50 of about 5 and 0.03 nM. As the natural and synthetic maurotoxins exhibit indistinguishable physicochemical and pharmacological properties, they are likely to adopt the same half-cystine pairing pattern which is unique among known scorpion toxins. However, this disulfide organization is different from those reported for Pandinus imperator and Heterometrus spinnifer toxins 1 (Pi1 and HsTx1), two novel four-disulfide bridged K+ channel-acting scorpion toxin sharing about 50-70% sequence identity with maurotoxin.
    Toxicon 12/1998; 36(11):1609-11. · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new toxin acting on K+ channels, maurotoxin (MTX), has been purified to homogeneity from the venom of the chactoid scorpion Scorpio maurus. MTX is a basic single chain 34 amino acid residue polypeptide, amidated at its C terminal, and crosslinked by four disulfide bridges. It shows 29-68% sequence identity with other K+ channel toxins, and presents an original disulfide pattern, the last two half-cystine residues (31-34) being connected. Although the first three disulfide bonds have not been defined experimentally, modelling based on the structure of charybdotoxin favored two combinations out of six, one of which has two bridges (3-24 and 9-29) in common with the general motif of scorpion toxins. The last bridge would connect residues 13 and 19. MTX inhibits the binding to rat brain synaptosomal membranes of both [125I]apamin, a SK(Ca) channel blocker (IC50 5 nM), and [125I]kaliotoxin, a Kv channel blocker (IC50 30 pM). MTX blocks the Kv1.1, Kv1.2 and Kv1.3 currents expressed in Xenopus oocytes with IC50 of 45, 0.8 and 180 nM, respectively. MTX represents a member of a new class of short toxins with 4 disulfide bridges, active on voltage-dependent K+ channel and also competing with apamin for binding to its receptor.
    FEBS Letters 05/1997; 406(3):284-90. · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A depressant toxin active on insects, Buthacus arenicola IT2, was isolated from the venom of the North African scorpion B. arenicola and its structural and pharmacological properties were investigated. B. arenicola IT2 is a single polypeptide of 61 amino acid residues, including 8 half-cystines but no methionine and histidine, with a molecular mass of 6835 Da. Its amino acid sequence is 79-95% identical to other depressant toxins from scorpions. When injected into the cockroach Blatella germanica, B. arenicola IT2 induced a slow depressant flaccid paralysis with a LD50 of 175 ng. B. arenicola IT2 has two non-interacting binding sites in cockroach neuronal membranes: one of high affinity (Kd1 = 0.11 +/- 0.04 nM) and low capacity (Bmax1 = 2.2 +/- 0.6 pmol/mg), and one of low affinity (Kd2 = 24 +/- 7 nM) and high capacity (Bmax2 = 226 +/- 92 pmol/mg). Its binding to these two sites was completely inhibited by Leiurus quinquestriatus quinquestriatus IT2, a depressant toxin from L. quinquestriatus quinquestriatus. Reciprocal-binding experiments between B. arenicola IT2 and the excitatory insect-toxin A. australis Hector IT revealed competition between the two toxins for the high-affinity sites of B. arenicola IT2. B. arenicola IT2 has a higher affinity than L. quinquestriatus hebraeus IT2, a depressant toxin from L. quinquestriatus hebraeus. Thus, B. arenicola IT2 represents an interesting tool to study the receptor site for depressant toxins on insect sodium channels.
    European Journal of Biochemistry 02/1997; 243(1-2):93-9. · 3.58 Impact Factor
  • Toxicon 01/1997; 35(12):1666-1666. · 2.92 Impact Factor
  • Toxicon 01/1997; 35(12):1665-1665. · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maurotoxin is a toxin isolated from the venom of the Tunisian chactoid scorpion Scorpio maurus. It is a 34-amino-acid peptide cross-linked by four disulfide bridges. Maurotoxin competes with radiolabeled apamin and kaliotoxin for binding to rat-brain synaptosomes. Due to its very low concentration in venom (0.6% of the proteins), maurotoxin was chemically synthesized by means of an optimized solid-phase technique. The synthetic maurotoxin was characterized. It was lethal to mice following intracerebroventricular injection (LD50, 80 ng/mouse). The synthetic maurotoxin competed with 125I-apamin and 125I-kaliotoxin for binding to rat-brain synaptosomes with half-maximal effects at concentrations of 5 nM and 0.2 nM, respectively. Synthetic maurotoxin was tested on K+ channels and was found to block the Kv1.1, Kv1.2, and Kv1.3 currents with half-maximal blockage (IC50) at 37, 0.8 and 150 nM, respectively. Thus, maurotoxin is a scorpion toxin with four disulfide bridges that acts on K+ channels. The half-cystine pairings of synthetic maurotoxin were identified by enzymatic cleavage. The pairings were Cys3-Cys24, Cys9-Cys29, Cys13-Cys19 and Cys31-Cys34. This disulfide organization is unique among known scorpion toxins. The physicochemical and pharmacological properties of synthetic maurotoxin were indistinguishable from those of natural maurotoxin, which suggests that natural maurotoxin adopts the same half-cystine pairing pattern. The conformation of synthetic maurotoxin was investigated by means of circular dichroism spectroscopy and molecular modeling. In spite of its unusual half-cystine pairings, the synthetic-maurotoxin conformation appears to be similar to that of other short scorpion toxins.
    European Journal of Biochemistry 01/1997; 242(3):491-8. · 3.58 Impact Factor
  • Geochimica et Cosmochimica Acta 01/1997; 61(18). · 3.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new peptide ligand of the small conductance Ca2+ activated K+ channels has been purified from the venom (obtained by manual rather than electrical stimulation of the scorpion Androctonus mauretanicus mauretanicus), by following the inhibition of the 125I-apamin binding to its receptor on rat brain synaptosomes. Only one step on a C18 reversed-phase high-performance liquid chromatography column was necessary to obtain PO1. Its K0.5 for the apamin binding site was 100 nM. The amino acid sequence of PO1 is different from those of leiurotoxin and PO5. For the first time the same peptide was also purified from the venoms of two other species of North African scorpions, Androctonus australis and Buthus occitanus tunetanus. PO1 was chemically synthesized by the solid-phase technique and fully characterized. A model of PO1 was constructed by amino acid replacement using PO5 nuclear magnetic resonance studies as the starting model. Structure-activity relationships between these toxins and their receptor are discussed.
    International journal of peptide and protein research 01/1997; 48(6):514-21.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new peptide ligand of the small conductance Ca2+ activated K+ channels has been purified from the venom (obtained by manual rather than electrical stimulation of the scorpion Androctonus mauretanicus mauretanicus), by following the inhibition of the 125I-apamin binding to its receptor on rat brain synaptosomes. Only one step on a C18 reversed-phase high-performance liquid chromatography column was necessary to obtain PO1. Its K0.5 for the apamin binding site was 100 nM. The amino acid sequence of PO1 is different from those of leiurotoxin and PO5. For the first time the same peptide was also purified from the venoms of two other species of North African scorpions, Androctonus austmlis and Buthus occitanus tunetanus. PO1 was chemically synthesized by the solid-phase technique and fully characterized. A model of PO1 was constructed by amino acid replacement using PO5 nuclear magnetic resonance studies as the starting model. Structure-activity relationships between these toxins and their receptor are discussed.
    European Journal of Allergy and Clinical Immunology 11/1996; 48(6):514 - 521. · 1.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leiurotoxin I (Lei-NH2), a toxin isolated from the venom of the scorpion Leiurus quinquestriatus hebraeus, is a blocker of the apamin-sensitive Ca(2+)-activated K+ channels. It is a 31-residue polypeptide cross-linked by three disulfide bridges which are presumably between Cys3-Cys21, Cys8-Cys26, and Cys12-Cys28. To investigate the role of these disulfides, analogs of Lei-NH2 lacking one disulfide bridge (i.e., [Abu3,21]Lei-NH2, [Abu8,26]Lei-NH2, and [Abu12,28]Lei-NH2) were chemically synthesized by selective replacement of each pair of half-cystines forming a bridge by two alpha-aminobutyrate (Abu) residues. The two disulfide pairings of the main folded form of the synthetic analogs were established by enzymatic proteolysis. They were as expected between Cys8-Cys26 and Cys12-Cys28 for [Abu3,21]Lei-NH2 but were unexpectedly between Cys3-Cys12 and Cys21-Cys28 for [Abu8,26]Lei-NH2 and between Cys3-Cys8 and Cys21-Cys26 for [Abu12,28]Lei-NH2. The synthetic peptides were tested in vitro for their capacity to compete with the binding of [125I]apamin to rat brain synaptosomes and in vivo for their neurotoxicity in mice. In both assays, [Abu3,21]Lei-NH2 exhibited full Lei-NH2-like activity whereas [Abu8,26]Lei-NH2 and [Abu12,28]-Lei-NH2 possessed only residual activities (< 2% native toxin activity). This suggests that disulfide bridge Cys3-Cys21 is not essential per se for high toxin activity. Circular dichroism (CD) spectroscopy of the three analogs showed that only [Abu3,21]Lei-NH2 exhibited a CD spectrum similar to that of Lei-NH2, suggesting they both adopt closely related conformations, in agreement with the pharmacological data. Structural models of the analogs were constructed on the basis of the disulfide pairing assignment and compared with that of Lei-NH2.
    Biochemistry 09/1996; 35(33):10641-7. · 3.38 Impact Factor
  • Toxicon 01/1996; 34(10):1090-1091. · 2.92 Impact Factor