Are you Lepeng Hong?

Claim your profile

Publications (3)13.11 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ursolic acid (UA) has been reported to possess anticancer activities. While some of the anticancer activities of UA have been explained by its apoptosis-inducing properties, the mechanisms underlying its anticancer actions are largely unknown. We have found that UA activated autophagy induced cytotoxicity and reduced tumor growth of cervical cancer cells TC-1 in a concentration-dependent manner. UA did not induce apoptosis of TC-1 cells in vitro as determined by: Annexin V/PI staining, DNA fragmentation, and western blot analysis of the apoptosis-related proteins. We found that UA increased punctate staining of LC3, which is an autophagy marker. LC3II, the processed form of LC3I which is formed during the formation of double membranes, was induced by UA treatment. These results were further confirmed by transmission electron microscopy. Wortmannin, an inhibitor of autophagy, and a siRNA for Atg5 reduced LC3II and simultaneously increased the survival of TC-1 cells treated with UA. We also found that LC3II was significantly reduced and that survival was increased in Atg5-/- MEF cells compared with Atg5+/+ MEF cells under UA treatment. However, silencing BECN1 by siRNA affected neither the expression of LC3II nor survival of TC-1 cells under UA treatment. These results suggest that autophagy is a major mechanism by which UA kills TC-1 cells. It is Atg5 rather than BECN1 that plays a crucial role in UA-induced autophagic cell death in TC-1 cells. The activation of autophagy by UA may become a potential cancer therapeutic strategy complementing the apoptosis-based therapies. Furthermore, regulation of Atg5 may improve the efficacy of UA in cancer treatment. © 2013 Wiley Periodicals, Inc.
    International Journal of Cancer 06/2013; · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endogenously produced hydrogen sulfide (H2S) may have multiple functions in brain. An increasing number of studies have demonstrated its anti-inflammatory effects. In the present study, we investigated the effect of sodium hydrosulfide (NaHS, a H2S donor) on cognitive impairment and neuroinflammatory changes induced by injections of Amyloid-β1-40 (Aβ1-40), and explored possible mechanisms of action. We injected Aβ1-40 into the hippocampus of rats to mimic rat model of Alzheimer's disease (AD). Morris water maze was used to detect the cognitive function. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was performed to detect neuronal apoptosis. Immunohistochemistry analyzed the response of glia. The expression of interleukin (IL)-1β and tumor necrosis factor (TNF)-α was measured by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). The expression of Aβ1-40, phospho-p38 mitogen-activated protein kinase (MAPK), phospho-p65 Nuclear factor (NF)-κB, and phospho-c-Jun N-terminal Kinase (JNK) was analyzed by western blot. We demonstrated that pretreatment with NaHS ameliorated learning and memory deficits in an Aβ1-40 rat model of AD. NaHS treatment suppressed Aβ1-40-induced apoptosis in the CA1 subfield of the hippocampus. Moreover, the over-expression in IL-1β and TNF-α as well as the extensive astrogliosis and microgliosis in the hippocampus induced by Aβ1-40 were significantly reduced following administration of NaHS. Concomitantly, treatment with NaHS alleviated the levels of p38 MAPK and p65 NF-κB phosphorylation but not JNK phosphorylation that occurred in the Aβ1-40-injected hippocampus. These results indicate that NaHS could significantly ameliorate Aβ1-40-induced spatial learning and memory impairment, apoptosis, and neuroinflammation at least in part via the inhibition of p38 MAPK and p65 NF-κB activity, suggesting that administration of NaHS could provide a therapeutic approach for AD.
    Journal of Neuroinflammation 08/2012; 9:202. · 4.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A growing number of studies demonstrate that valproic acid (VPA), an anti-convulsant and mood-stabilizing drug, is neuroprotective against various insults. This study investigated whether treatment of ischemic stroke with VPA ameliorated hippocampal cell death and cognitive deficits. Possible mechanisms of action were also investigated. Global cerebral ischemia was induced to mimic ischemia/reperfusion (I/R) damage. The pyramidal cells within the CA1 field were stained with cresyl violet. Cognitive ability was measured 7 days after I/R using a Morris water maze. The anti-inflammatory effects of VPA on microglia were also investigated by immunohistochemistry. Pro-inflammatory cytokine production was determined using enzyme-linked immunosorbent assays (ELISA). Western blot analysis was performed to determine the levels of acetylated H3, H4 and heat shock protein 70 (HSP70) in extracts from the ischemic hippocampus. VPA significantly increased the density of neurons that survived in the CA1 region of the hippocampus on the 7th day after transient global ischemia. VPA ameliorated severe deficiencies in spatial cognitive performance induced by transient global ischemia. Post-insult treatment with VPA also dramatically suppressed the activation of microglia but not astrocytes, reduced the number of microglia, and inhibited other inflammatory markers in the ischemic brain. VPA treatment resulted in a significant increase in levels of acetylated histones H3 and H4 as well as HSP70 in the hippocampus. Our results indicated that VPA protected against hippocampal cell loss and cognitive deficits. Treatment with VPA following cerebral ischemia probably involves multiple mechanisms of action, including inhibition of ischemia-induced cerebral inflammation, inhibition of histone deacetylase (HDAC) and induction of HSP.
    Life sciences 03/2012; 90(11-12):463-8. · 2.56 Impact Factor