Akira Ito

Kyushu University, Hukuoka, Fukuoka, Japan

Are you Akira Ito?

Claim your profile

Publications (108)267.71 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Adipose-derived regenerative cells (ADRCs) are a promising source of autologous stem cells for regeneration and repair of damaged tissue. Herein, we investigated the therapeutic potential of ADRC sheets created by a magnetite tissue engineering technology (Mag-TE) for myocardial infarction.
    International journal of cardiology. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Artificial skeletal muscle tissues composed of cells are expected to be used for applications of regenerative medicine and drug screening. Generally, however, the physical forces generated by tissue-engineered skeletal muscle are lower than those of skeletal muscle tissues found in the body. Local hyperthermia is used for many diseases including muscle injuries. It was recently reported that mild heat treatment improved skeletal muscle functions. In this study, we investigated the effects of mild heat treatment on the tissue-engineered skeletal muscle tissues in vitro. We used magnetite cationic liposomes to label C2C12 myoblast cells magnetically, and constructed densely packed artificial skeletal muscle tissues by using magnetic force. Cell culture at 39°C promoted the differentiation of myoblast cells into myotubes. Moreover, the mild and transient heat treatment improved the contractile properties of artificial skeletal muscle tissue constructs. These findings indicate that the culture method using heat treatment is a useful approach to enhance functions of artificial skeletal muscle tissue.
    Current pharmaceutical biotechnology 04/2014; · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electrical impulses are necessary for proper in vivo skeletal muscle development. To fabricate functional skeletal muscle tissues in vitro, recapitulation of the in vivo niche, including physical stimuli, is crucial. Here, we report a technique to engineer skeletal muscle tissues in vitro by electrical pulse stimulation (EPS). Electrically excitable tissue-engineered skeletal muscle constructs were stimulated with continuous electrical pulses of 0.3 V/mm amplitude, 4 ms width, and 1 Hz frequency, resulting in a 4.5-fold increase in force at day 14. In myogenic differentiation culture, the percentage of peak twitch force (%Pt) was determined as the load on the tissue constructs during the artificial exercise induced by continuous EPS. We optimized the stimulation protocol, wherein the tissues were first subjected to 24.5%Pt, which was increased to 50-60%Pt as the tissues developed. This technique may be a useful approach to fabricate tissue-engineered functional skeletal muscle constructs.
    Scientific Reports 01/2014; 4:4781. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-propionyl cysteaminylphenol-maleimide-dextran (NPCMD) is a toxic tyrosinase substrate developed to treat melanoma. We investigated the effect of NPCMD on innate immune responses in monocytes. CD14(+) monocytes and a monocytic cell line, THP-1, were stimulated with NPCMD in vitro. Cytokines in the culture supernatants were determined by ELISA and flow cytometry. NPCMD stimulated CD14(+) monocytes and THP-1 cells to secrete TNFα, IL-6 and IL-8, but not IL-10 or IL-12. TNFα secretion from THP-1 cells stimulated with NPCMD was inhibited by addition of an anti-TLR4 mAb in culture. Moreover, NPCMD stimulated production of pro-IL-1β in CD14(+) monocytes and monocytic cell line THP-1 cells and activated the NLRP3-inflammasome, resulting in production of mature IL-1β. Use of ASC and NLRP3-deficient THP-1 cell lines established involvement of the NLRP3 inflammasome in an IL-1β secretion in treatment with NPCMD. Inhibition of IL-1β secretion by an endocytosis inhibitor, cytochalasin B, and a lysosomal enzyme cathepsin B inhibitor, CA-074 Me, suggested the involvement of lysosomal rupture and leakage of cathepsin B into the cytosol in NLRP3 activation by NPCMD. The immunopotentiating effect of NPCMD mediated by TLR4 and NLRP3 inflammasome activation could be useful for eliciting effective adaptive immune responses against melanoma and other tumors.
    Journal of dermatological science 11/2013; · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: By combining synthetic biology with nanotechnology, we demonstrate remote controlled gene expression using a magnetic field. Magnetite nanoparticles, which generate heat under an alternating magnetic field, have been developed to label cells. Magnetite nanoparticles and heat-induced therapeutic genes were introduced into tumor xenografts. The magnetically triggered gene expression resulted in tumor growth inhibition. This system shows great potential for controlling target gene expression in a space and time selective manner and may be used for remote control of cell functions via gene expression.
    ACS Synthetic Biology 10/2013; · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported the production of human erythropoietin (hEpo) using genetically manipulated (GM) chickens. The recombinant hEpo was produced in the serum and egg white of the GM chickens, and the oligosaccharide chain structures of the serum-derived hEpo were more favorable than those of the egg white-derived hEpo. In the present study, a retroviral vector encoding an expression cassette for a fusion protein of hEpo and the Fc region of human immunoglobulin G (hEpo/Fc) was injected into developing chicken embryos, with the aim of recovering the serum-derived hEpo from egg yolk through the yolk accumulation mechanism of maternal antibodies. The GM chickens that hatched stably produced the hEpo/Fc fusion protein not only in their serum and egg white, but also in the egg yolk as expected. Lectin blot analyses revealed that significant amounts of the oligosaccharide chains of hEpo/Fc produced in the serum and eggs of GM chickens terminated with galactose, and that the oligosaccharide chains of the serum- and yolk-derived hEpo/Fc incorporated sialic acid residues. Moreover, biological activity assessment using Epo-dependent cells revealed that the yolk-derived hEpo/Fc exhibited a comparable performance to the serum- and CHO-derived hEpo/Fc. These results indicate that transport of Fc fusion proteins from the blood circulation to the yolk in chickens represents an effective strategy for the production of pharmaceutical glycoproteins using transgenic chicken bioreactors.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exploitation of biological properties unique to cancer cells may provide a novel approach to overcome difficult challenges to the treatment of advanced melanoma. In order to develop melanoma-targeted chemothermoimmunotherapy, a melanogenesis substrate, N-propionyl-4-S-cysteaminylphenol (NPrCAP), sulfur-amine analogue of tyrosine, was conjugated with magnetite nanoparticles. NPrCAP was exploited from melanogenesis substrates, which are expected to be selectively incorporated into melanoma cells and produce highly reactive free radicals through reacting with tyrosinase, resulting in chemotherapeutic and immunotherapeutic effects by oxidative stress and apoptotic cell death. Magnetite nanoparticles were conjugated with NPrCAP to introduce thermotherapeutic and immunotherapeutic effects through nonapoptotic cell death and generation of heat shock protein (HSP) upon exposure to alternating magnetic field (AMF). During these therapeutic processes, NPrCAP was also expected to provide melanoma-targeted drug delivery system.
    Journal of skin cancer. 01/2013; 2013:742925.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissue engineered skeletal muscle should possess a high cell-dense structure with unidirectional cell alignment. However, limited nutrient and/or oxygen supply within the artificial tissue constructs might restrict cell viability and muscular functions. In this study, we genetically modified myoblast cells with the anti-apoptotic Bcl-2 gene and evaluated their function in artificial skeletal muscle tissue constructs. Magnetite cationic liposomes were used to magnetically label C2C12 myoblast cells for the construction of skeletal muscle bundles by applying a magnetic force. Bcl-2-overexpressing muscle bundles formed highly cell-dense and viable tissue constructs, while muscle bundles without Bcl-2 overexpression exhibited substantial necrosis/apoptosis at the central region of the bundle. Bcl-2-overexpressing muscle bundles contracted in response to electrical pulses and generated a significantly higher physical force. These findings indicate that the incorporation of anti-apoptotic gene-transduced myoblast cells into tissue constructs significantly enhances skeletal muscle formation and function.
    Tissue Engineering Part A 10/2012; · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim: Accumulating evidence has indicated that hyperthermia using magnetite nanoparticles induces anti-tumor immunity. This study investigated the diversity of T-cell receptors (TCRs) in tumor-infiltrating lymphocytes after hyperthermia using magnetite nanoparticles. Materials & methods: Functionalized magnetite nanoparticles, N-propionyl-4-S-cysteaminylphenol (NPrCAP)/magnetite, were synthesized by conjugating the melanogenesis substrate NPrCAP with magnetite nanoparticles. NPrCAP/magnetite nanoparticles were injected into B16 melanomas in C57BL/6 mice, which were subjected to an alternating magnetic field for hyperthermia treatment. Results: Enlargement of the tumor-draining lymph nodes was observed after hyperthermia. The TCR repertoire was restricted in tumor-infiltrating lymphocytes, and expansion of Vβ11(+) T cells was preferentially found. DNA sequences of the third complementarity-determining regions revealed the presence of clonally expanded T cells. Conclusion: These results indicate that the T-cell response in B16 melanomas after hyperthermia is dominated by T cells directed toward a limited number of epitopes and that epitope-specific T cells frequently use a restricted TCR repertoire. Original submitted 14 May 2012; Revised submitted 30 July 2012.
    Nanomedicine 10/2012; · 5.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastatic melanoma is resistant to conventional therapies. N-propionyl-4-S-cysteaminylphenol (NPrCAP), an N-protected sulfur-amine analog of tyrosine, is a good substrate for tyrosinase and is selectively incorporated into melanoma cells, causing cytotoxicity in vitro and in vivo. We have recently shown that intratumoral injections of NPrCAP suppress not only the growth of primary B16F1 melanoma tumors but also of secondary, re-challenged tumors. The participation of CD8(+) T cells has been suggested for the NPrCAP-mediated anti-B16 melanoma immunity. In this study, the molecular mechanism of the NPrCAP cytotoxicity and immunogenicity was examined. The phenol NPrCAP was shown to be activated by mushroom tyrosinase to the ortho-quinone N-propionyl-4-S-cysteaminyl-1,2-benzoquinone (NPrCAQ), and the structure was confirmed by reducing it to the corresponding catechol. NPrCAQ reacted rapidly with biologically relevant sulfhydryl compounds such as cysteine, glutathione and bovine serum albumin. The NPrCAQ-thiol adduct formation was proven with a model thiol N-acetylcysteine by spectroscopic methods. The production and release of NPrCAQ-protein adducts was verified in B16F1 melanoma cells in vitro and in B16F1 melanoma-bearing mice in vivo through the detection of 5-S-cysteaminyl-3-S-cysteinylcatechol after acid hydrolysis of the protein fraction. These results suggest that the phenol NPrCAP, acting as a prohapten, can be activated in melanoma cells by tyrosinase to the quinone-hapten NPrCAQ, which binds to melanosomal proteins through their cysteine residues to form possible neo-antigens, thus triggering the immunological response. NPrCAP thus represents a potential new approach to immunotherapy against metastatic melanoma.
    Biochemical pharmacology 06/2012; 84(5):646-53. · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the major goals of gene therapy is to regulate the expression of therapeutic genes in desired cells or tissues. For this purpose, heat-inducible vectors have been exploited for cancer gene therapy combined with hyperthermia, which can result in considerable improvement of therapeutic effects. In the present study, we constructed a novel heat-inducible gene expression system incorporating a transactivation system with a positive feedback loop of transcriptional amplification. The target gene expression mediated by the transactivator under the control of a heat shock protein 70B' promoter is enhanced by self-promoted transactivator gene expression. This expression system showed tight control of target gene expression together with high-level expression; enhanced expression of the reporter gene was observed in transfected cells upon heat treatment, while negligible gene expression was detected in non-heated cells. When a therapeutic gene was used as the target gene, a considerable cytotoxic effect was observed after heat treatment of cancer cells transfected with the plasmids. The heat-induced transgene expression system is a promising new approach for the development of both a safe and effective vector for hyperthermia-based cancer gene therapy.
    Journal of Bioscience and Bioengineering 05/2012; 114(4):460-5. · 1.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-propionyl-4-S-cysteaminylphenol (NPr-4-S-CAP) is selectively incorporated into melanoma cells and degrades them. However, it remains unclear whether NPr-4-S-CAP can induce cell death associated with the induction of host immune responses and tumor suppression in vivo. To examine the molecular mechanism of NPr-4-S-CAP-mediated cytotoxicity toward melanoma cells and to test whether NPr-4-S-CAP can suppress transplanted primary and secondary B16F1 melanomas. Cytotoxicity and apoptosis of melanoma cells were assessed by cell counting, flow cytometry, and detection of reactive oxygen species (ROS) and apoptotic molecules. NPr-4-S-CAP-associated host immunity was studied using a B16F1 mouse melanoma model through the application of CD4- and CD8-specific antibodies and tetramer assay. NPr-4-S-CAP suppressed growth of pigmented melanoma cells associated with an increase of intracellular ROS, activation of caspase 3 and DNA fragmentation, suggesting that NPr-4-S-CAP mediated ROS production, eliciting apoptosis of melanoma cells. Growth of transplanted B16F1 melanomas was inhibited after the consecutive intratumoral injections of NPr-4-S-CAP, and the tumor growth after rechallenge of B16F1 was significantly suppressed in the treated mice. This suppression occurred when the treated mice were given the anti-CD4 antibody, but not the anti-CD8 antibody. Tetramer assay demonstrated increased TYRP-2-specific CD8(+) T cells in the lymph node and spleen cells prepared from NPr-4-S-CAP-treated B16F1-bearing mice. These suggest that NPr-4-S-CAP induces apoptosis in melanoma cells through ROS production and generates CD8(+) cell immunity resulting in the suppression of rechallenged B16F1 melanoma.
    Journal of dermatological science 05/2012; 67(1):51-60. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peptide immunotherapy using T-cell epitopes is expected to be an effective treatment for allergic diseases such as Japanese cedar (Cryptomeria japonica; Cj) pollinosis. To develop a treatment for pollen allergy by inducing oral tolerance, we generated genetically manipulated (GM) chickens by retroviral gene transduction, to produce a fusion protein of chicken egg white lysozyme and a peptide derived from seven dominant human T-cell epitopes of Japanese cedar pollen allergens (cLys-7crp). The transgene sequence was detected in all chickens transduced with the retroviral vector. Transduction efficiency in blood cells correlated to transgene expression. Western blot analysis revealed that cLys-7crp was expressed in the egg white of GM hens. Mice induced to develop allergic rhinitis by Cj pollinosis were fed with cLys-7crp-containing egg white produced by GM chickens. Total and Cj allergen (Cry j 1)-specific IgE levels were significantly decreased in allergic mice fed with cLys-7crp-containing egg white compared with allergic mice fed with normal egg white. These results suggest that oral administration of T-cell epitope-containing egg white derived from GM chickens is effective for the induction of immune tolerance as an allergy therapy.
    PLoS ONE 01/2012; 7(10):e48512. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Control of therapeutic gene expression in tumours is a major goal of gene therapy research, as it can restrict cytotoxic gene expression in cancer cells. In addition, the combination of hyperthermia with gene therapy through the application of heat-inducible vectors can result in considerable improvements in therapeutic efficiency. In this study, to combine heat-inducibility with high-level transgene expression, we developed a heat-inducible transgene expression system with transcriptional amplification mediated by a tetracycline-responsive transactivator. Materials and methods: A hybrid promoter was generated by placing the heat shock protein (HSP) 70B' promoter under the tetracycline-repressor responsive element sequence, and a reporter/therapeutic gene expression plasmid was constructed by placing a reporter/therapeutic gene under the control of this hybrid promoter. Results: When the transactivator expression plasmid harbouring an expression cassette of the tetracycline-responsive transactivator gene was co-transfected with a reporter gene expression plasmid, the reporter gene expression was controlled by heat treatment. With this system, high levels of heat-induced transgene expression were observed compared to that from the HSP promoter alone without the transactivator. Evaluation of in vitro therapeutic effects using cancer cell lines revealed that therapeutic gene expression effectively caused cell death in a greater percentage of the cells. Conclusion: These findings indicate that this strategy improves the efficacy of cancer gene therapy.
    International Journal of Hyperthermia 01/2012; 28(8):788-98. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Site-specific gene recombination systems, such as Cre/loxP, have been used for genetic modification of cells and organisms in both basic and applied research. We previously developed an accumulative gene integration system (AGIS), in which target gene cassettes could be repeatedly integrated into a pre-determined site on a plasmid or cellular genome by recombinase-mediated cassette exchange (RMCE), using Cre and mutated loxPs. In the present study, we designed a simplified AGIS. For gene integration into a target site, the previous system used two loxP sites in the acceptor DNA, whereas the new system uses a single loxP site. The gene integration reactions were repeated four times in vitro using Cre protein and specific plasmids. The expected integration reactions mediated by Cre occurred at the loxP sites, resulting in integration of four target genes. The system was also used for genomic integration of reporter genes using Chinese hamster ovary (CHO) cells. The reporter genes were efficiently introduced into the CHO genome in a Cre-dependent manner, and transgene expression was detected after the integration reaction. The expression levels of the reporter genes were enhanced, corresponding to the increase of transgene copy number. Recombinase-mediated AGIS provides a useful tool for the modification of cellular genomes.
    Journal of Bioscience and Bioengineering 11/2011; 113(3):381-8. · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors, therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.
    Biochemical and Biophysical Research Communications 11/2011; 417(1):78-83. · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported an accumulative site-specific gene integration system using Cre recombinase and mutated loxP sites, where a recombinase-mediated cassette exchange (RMCE) reaction is repeatable. This gene integration system was applied for antibody production using recombinant Chinese hamster ovary (CHO) cells. We introduced an exchange cassette flanked by wild-type and mutated loxP sites into the chromosome of CHO cells for the establishment of recipient founder cells. Then, the donor plasmids including an expression cassette for an antibody gene flanked by a compatible pair of loxP sites were prepared. The donor plasmid and a Cre expression vector were co-transfected into the founder CHO cells to give rise to RMCE in the CHO genome, resulting in site-specific integration of the antibody gene. The RMCE procedure was repeated to increase the copy numbers of the integrated gene. Southern blot and genomic PCR analyses for the established cells revealed that the transgenes were integrated into the target site. Antibody production determined by ELISA and western blotting was increased corresponding to the number of transgenes. These results indicate that the accumulative site-specific gene integration system could provide a useful tool for increasing the productivity of recombinant proteins.
    Cytotechnology 09/2011; 64(3):267-79. · 1.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Therapeutic angiogenesis with cell transplantation represents a novel strategy for severe ischemic diseases. However, some patients have poor response to such conventional injection-based angiogenic cell therapy. Here, we investigated a therapeutic potential of mesenchymal stem cell (MSC) sheet created by a novel magnetite tissue engineering technology for reparative angiogenesis. Human MSCs incubated with magnetic nanoparticle-containing liposomes were cultured, and a magnet was placed on the reverse side. Magnetized MSCs formed multilayered cell sheets according to magnetic force. Nude mice were subjected to unilateral hind limb ischemia and separated into 3 groups. For the control group, saline was injected into ischemic tissue. In the MSC-injected group, mice received magnetized MSCs by conventional needle injections without sheet formula as a control cell group. In the MSC-sheet group, MSC sheet was layered onto the ischemic tissues before skin closure. Blood flow recovery and the extent of angiogenesis were assessed by a laser Doppler blood flowmetry and histological capillary density, respectively. The MSC-sheet group had a greater angiogenesis in ischemic tissues compared to the control and MSC-injected groups. The angiogenic and tissue-preserving effects of MSC sheets were attributable to an increased expression of vascular endothelial growth factor and reduced apoptosis in ischemic tissues. In cultured MSCs, magnetic labeling itself inhibited apoptosis via a catalase-like antioxidative mechanism. MSC sheet created by the novel magnetic nanoparticle-based tissue engineering technology would represent a new modality for therapeutic angiogenesis and tissue regeneration.
    Arteriosclerosis Thrombosis and Vascular Biology 07/2011; 31(10):2210-5. · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate whether insulin-like growth factor (IGF)-I gene delivery to myoblast cells promotes the contractile force generated by hydrogel-based tissue-engineered skeletal muscles in vitro. Two retroviral vectors allowing doxycycline (Dox)-inducible expression of the IGF-I gene were transduced into mouse myoblast C2C12 cells to evaluate the effects of IGF-I gene expression on these cells. IGF-I gene expression stimulated the proliferation of C2C12 cells, and a significant increase in the growth rate was observed for IGF-I-transduced C2C12 cells with Dox addition, designated C2C12/IGF (Dox+) cells. Quantitative morphometric analyses showed that the myotubes induced from C2C12/IGF (Dox+) cells had a larger area and a greater width than control myotubes induced from normal C2C12 cells. Artificial skeletal muscle tissues were prepared from the respective cells using hydrogels composed of type I collagen and Matrigel. Western blot analyses revealed that the C2C12/IGF (Dox+) tissue constructs showed activation of a skeletal muscle hypertrophy marker (Akt) and enhanced expression of muscle-specific markers (myogenin, myosin heavy chain and tropomyosin). Moreover, the creatine kinase activity was increased in the C2C12/IGF (Dox+) tissue constructs. The C2C12/IGF (Dox+) tissue constructs contracted in response to electrical pulses, and generated a significantly higher physical force than the control C2C12 tissue constructs. These findings indicate that IGF-I gene transfer has the potential to yield functional skeletal muscle substitutes that are capable of in vivo restoration of the load-bearing function of injured muscle or acting as in vitro electrically-controlled bio-actuators.
    Journal of Bioscience and Bioengineering 06/2011; 112(3):273-8. · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Embryoid bodies resemble post-implantation egg-cylinder stage embryos and are used to differentiate embryonic stem cells in vitro. In this study, we enriched mouse vasa homolog-positive germ cells from embryoid bodies after 8d of differentiation using a magnetic separation method with magnetite cationic liposomes.
    Journal of Bioscience and Bioengineering 05/2011; 112(2):184-7. · 1.74 Impact Factor

Publication Stats

2k Citations
267.71 Total Impact Points

Institutions

  • 2007–2014
    • Kyushu University
      • • Department of Chemical Engineering
      • • Faculty of Engineering
      Hukuoka, Fukuoka, Japan
  • 2010–2013
    • Fukuoka University
      • • Department of Chemical Engineering
      • • Department of Dermatology
      Hukuoka, Fukuoka, Japan
  • 2009–2013
    • Sapporo Medical University
      • Division of Dermatology
      Sapporo, Hokkaidō, Japan
    • Nishi kyushu University
      Hukuoka, Fukuoka, Japan
  • 2012
    • Fujita Health University
      • Department of Chemistry
      Nagoya, Aichi, Japan
  • 2005–2008
    • Nagoya City University
      • Division of Nephrologyogy
      Nagoya, Aichi, Japan
  • 2002–2008
    • Nagoya University
      • Graduate School of Engineering
      Nagoya-shi, Aichi-ken, Japan
  • 2004
    • The University of Tokyo
      • Department of Chemistry and Biotechnology
      Tokyo, Tokyo-to, Japan